경남 세라믹산업 중장기 육성전략

2018. 11. 14.

[목 차]

I. ?	변구 개요	1
1.	세라믹 개요 및 중요성	3
2.	연구 수행 배경	7
3.	연구 수행 체계	.0
4.	연구 수행 경과	.3
II.	네라믹 관련 사회 · 정책 현황 ···································	. 7
1.	세라믹 관련 사회적 이슈 현황	.9
2.	신산업 육성 정책 현황 2	28
3.	지역산업 육성 정책 현황	35
4.	과학기술 정책 현황	14
5.	소재·부품 육성정책 현황 ·······	51
6.	소결 6	51
III.	세라믹 산업ㆍ경제 현황	53
1.	세라믹 산업 규모6	5
2.	경상남도 세라믹 산업 현황 7	13
3.	경상남도 세라믹 기업 설문조사	90
4.	경남 세라믹 기업 인터뷰 10)7
5.	소결 ····································	4

IV. 세라믹 관련 과학ㆍ기술 현황····································	117
1. 세라믹 분야 연구개발 투자 현황	119
2. 세라믹 기술 수준	121
3. 세라믹 기술 로드맵 현황	124
4. 세라믹 분야 기술개발 현황	128
5. 소결 ······	145
V. 세라믹 산업 클러스터 현황····································	147
1. 국내 세라믹 산업 클러스터 현황	149
2. 해외 세라믹 산업 클러스터(일본 아이치현) 현황	165
3. 소결 ······	176
VI. 경남 세라믹산업 육성 방안	177
1. 경남 세라믹산업 육성 방향	179
2. 경남 세라믹산업 육성 추진 계획	184
3. 경남 세라믹산업 육성 사업 추진방안	210
VII. 경남 세라믹산업 육성 기대효과 ····································	213
1. 기대효과 산출 모델	215
2. 기대효과 산출 결과	218
부록 1. 경남 세라믹산업 육성 세부 수행계획	229
부록 2. 경남 세라믹기업 및 수요기업 설문조사서	247

[표 목 차]

[丑	1] 총괄위원회 구성	11
[丑	2] 기획위원회 구성	12
[丑	3] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(1/8)	20
 [4] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(2/8)	21
[丑	5] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(3/8)	22
[丑	6] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(4/8)	23
[丑	7] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(5/8)	24
[丑	8] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(6/8)	25
[丑	9] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(7/8)	26
[丑	10] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(8/8)	27
[丑	11] 경남 국가혁신클러스터 거점 및 혁신주체 현황	41
[丑	12] 중국제조 2025 9대 전략적 임무	53
[丑	13] 중국제조 2025 10대 전략적 중점분야	54
[丑	14] Horizon 2020 3대 우선과제 및 13대 전략	56
[丑	15] 제4자 소재부품발전기본계획 지원분야	60
[丑	16] 경상남도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도	77
[丑	17] 경상남도 세라믹 성형·가공 세부분야별 업체 수 및 집적도	78
[丑	18] 경상남도 주요 세라믹 기업 현황(1/2)	79
[丑	19] 경상남도 주요 세라믹 기업 현황(2/2)	80
[丑	20] 전국 시도별 제조업 부가가치 및 비중 현황(2016년)	81
 [21] 경상남도 제조업 세부 분류별 출하액 비중 및 성장률	84
 [22] 경상남도 제조업 세부 분류별 집적도(2015년 기준)	86
[丑	23] 참고. 경상남도 제조업 세부 분류 - 표준산업분류 세분류 대응표(1/2)	87
 [24] 참고. 경상남도 제조업 세부 분류 - 표준산업분류 세분류 대응표(2/2)	88
[丑	25] 경상남도 세라믹 기업 설문조사 응답기업 생산품목별 비중	92

[丑	26]	세라믹 기업 신제품 관련 투자계획 세부내용	98
[丑	27]	설문조사 대상 세라믹 수요기업1	.02
[丑	28]	세라믹 수요기업 설문조사 응답기업 생산품목1	.04
[丑	29]	세라믹 소재·부품 활용 세부내용	.04
[丑	30]	세라믹 소재·부품 미활용 사유	.05
[丑	31]	세라믹 수요 기업 정책수요1	.06
[丑	32]	세라믹 세부 분야별 주요국 기술수준(2017년 기준)1	.23
[丑	33]	국내 세라믹 논문 창출 건수 상위 10대 기관(2012~2016)1	.32
[丑	34]	한국세라믹기술원 세부 연구 분야1	.34
[丑	35]	한국세라믹기술원 주요 연구 분야 인력규모1	.34
[丑	36]	재료연구소 세라믹 관련 세부 연구 분야	.36
[丑	37]	재료연구소 세라믹 연구 분야별 인력규모1	.36
[丑	38]	한국전기연구원 세라믹 관련 세부 연구 분야	.38
[丑	39]	한국전기연구원 연구 분야별 인력규모	.38
[丑	40]	국립창원대학교 신소재융합공학전공 세부 연구 분야1	39
[丑	41]	국립창원대학교 신소재융합공학전공 구성 인력1	40
[丑	42]	국립경상대학교 세라믹공학전공 세부 연구 분야	.41
[丑	43]	국립경상대학교 나노·신소재공학전공 구성 인력	.42
[丑	44]	경남대학교 나노신소재공학전공 세부 연구 분야1	.43
[<u></u>	45]	경남대학교 나노신소재공학전공 구성 인력1	.43
[丑	46]	국립부산대학교(밀양) 나노융합기술학과 세부 연구 분야1	.44
[丑	47]	부산대학교 나노신소재공학전공 구성 인력1	44
[<u></u>	48]	전남테크노파크 세라믹산업종합지원센터 인프라 현황	.52
[<u></u>	49]	전남테크노파크 세라믹산업종합지원센터 입주기업현황1	.54
[<u></u>	50]	전라남도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도 1	.56
[丑	51]	전라남도 세라믹 성형·가공 세부분야별 업체 수 및 집적도 ······· 1	.57
[丑	52]	강원테크노파크 세라믹신소재지원센터 인프라 현황1	.61
[丑	53]	강원도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도1	.63
[丑	54]	강원도 세라믹 성형·가공 세부분야별 업체 수 및 집적도1	.64

[丑	55]	일본 아이치현 제조업 현황	67
[丑	56]	인프라 분야 세부사업 연계 대상 중앙정부 사업 현황 2	10
[丑	57]	연구개발 분야 세부사업 연계 대상 중앙정부 사업 현황 2	11
[丑	58]	인력양성 분야 세부사업 연계 대상 중앙정부 사업 현황2	12
[丑	59]	단위면적당 부가가치2	19
[丑	60]	특화단지 부가가치 창출 효과 2	19
[丑	61]	특화단지 부가가치 유발 효과 2	20
[丑	62]	지원을 통해 신규출시 한 제품 생산액2	21
[丑	63]	인프라 및 연구개발 지원 대상 산업 부가가치율 2	22
[丑	64]	인프라 및 연구개발 부가가치 창출 효과 2	22
[丑	65]	인프라 및 연구개발 지원 대상 산업 부가가치 유발 계수 2	23
[丑	66]	인프라 및 연구개발 부가가치 유발 효과 2	24
[<u></u>	67]	특화단지 직접 고용 효과 2	25
[丑	68]	특화단지 고용 유발 효과 2	26
[丑	69]	인프라 및 연구개발 고용 유발 효과2	27

[그 림 목 차]

[그림 1] 세라믹 특성 및 활용 분야	3
[그림 2] 산업혁명을 견인한 세라믹	4
[그림 3] 4차 산업혁명의 핵심 소재·부품인 세라믹	5
[그림 4] 메가트렌드 대응에 있어 세라믹의 중요성	6
[그림 5] 경상남도 제조업 출하액 성장률 및 출하액 비중(2016년 기준)	8
[그림 6] 전세계 세라믹 및 금속 소재 시장 규모 및 전망	9
[그림 7] 연구 수행 체계도	10
[그림 8] 세라믹 관련 주요 이슈 및 해결 방안	19
[그림 9] 새 정부의 산업정책 비전과 전략	29
[그림 10] 혁신성장동력 추진방향	32
[그림 11] 국가균형발전 비전과 전략	36
[그림 12] 국가혁신클러스터 지정 및 육성방향	39
[그림 13] 경남 국가혁신클러스터 조성 계획	40
[그림 14] 함께 만드는 새로운 경남 — 도정 4개년 계획 비전체계도	42
[그림 15] 제4차 과학기술기본계획 비전 및 미래모습	45
[그림 16] 제5차 지방과학기술진흥종합계획 비전 및 전략	48
[그림 17] 전세계 세라믹 산업 규모	65
[그림 18] 전세계 첨단세라믹 산업 규모	66
[그림 19] 전세계 첨단세라믹 산업 세부 분야별 규모 및 비중(2015년)	67
[그림 20] 전세계 첨단세라믹 활용 분야별 비중(2015년)	67
[그림 21] 국내 세라믹 산업 규모	68
[그림 22] 국내 전통세라믹 세부 분야별 비중(2015년 기준)	69
[그림 23] 국내 첨단세라믹 세부 분야별 비중(2015년 기준)	69
[그림 24] 국내 세라믹 산업 고용인원 수	70
[그림 25] 국내 세라믹 산업 사업체 수	71

[그림	26]	국내 세라믹산업 무역수지72
[그림	27]	국내 세라믹산업 국가별 무역수지 비중(2016년 기준)72
[그림	28]	경상남도 세라믹 기업 수 비중73
[그림	29]	경상남도 세라믹 원자재·기초소재 생산업체 매출액 규모별 업체수 비중 ···· 74
[그림	30]	경상남도 세라믹 가공·성형 제품 생산업체 매출액 규모별 업체수 비중 74
[그림	31]	경상남도 세라믹 산업 현황 (업체 수 10개, 업체 수 비중 10%, 집적도 1 이상) 76
[그림	32]	연도별 전국 및 경상남도 제조업 총부가가치(2010 기준가격) 82
[그림	33]	경상남도 제조업 세부 분류별 집적도(매출액 기준) 및 출하액 비중 종합 89
[그림	34]	경상남도 세라믹 기업 설문조사 응답결과 91
[그림	35]	경상남도 세라믹 기업 수요처 별 매출액 비중93
[그림	36]	경상남도 세라믹 기업 생산품목 유형별/수요처 별 매출액 비중93
[그림	37]	경상남도 세라믹 기업 기존 생산제품 관련 투자계획94
[그림	38]	경상남도 세라믹 기업 생산품목 유형별 기존 생산제품 관련 투자계획 95
[그림	39]	세라믹 기업 신제품 관련 투자계획96
[그림	40]	경상남도 세라믹 기업 생산품목 유형별 신제품 관련 투자계획 97
[그림	41]	경상남도 세라믹 기업 애로사항 99
[그림	42]	경상남도 세라믹 기업 생산품목 유형별 기업 애로사항 100
[그림	43]	세라믹 수요기업 설문조사 응답현황103
[그림	44]	세라믹산업 연구개발비 투자 규모119
[그림	45]	전체 제조업 연구개발비 투자 규모119
[그림	46]	세라믹산업 연구개발 단계별 연구개발비 투자 비중(2016년 기준) 120
[그림	47]	세라믹산업 연구개발비 재원별 비중(2016년 기준) 120
[그림	48]	주요국 세라믹 기술수준(최고 기술수준 보유국 대비 상대적 수준) 121
[그림	49]	소재·부품 R&D 전략(로드맵) ·······125
[그림	50]	중소기업 기술로드맵127
[그림	51]	국내 세라믹 특허 출원 기관 소재지별 등록특허 건수 및 비중 128
[그림	52]	국내 세라믹 특허 출원 기관 소재지별 등록특허 건수(등록년도 기준) 129
[그림	53]	경상남도 세라믹 특허 출원 기관 유형별 비중 및 기관 유형별 등록특허 비중 129
[그림	54]	경상남도 세라믹 특허(등록특허) 중 산-학/연 공동출원 비중 및 건수 130

[그림	55]	경상남도 학/연 세라믹 특허(등록특허) 소유권 이전 현황130
[그림	56]	국내 세라믹 논문 창출 기관 소재지별 논문 건수 및 비중(2012~2016) … 131
[그림	57]	국내 세라믹 논문 창출 기관 소재지별 연도별 논문 건수 132
[그림	58]	한국세라믹기술원 조직도133
[그림	59]	재료연구소 조직도135
[그림	60]	한국전기연구원 조직도137
[그림	61]	전남테크노파크 세라믹산업종합지원센터 보유장비 153
[그림	62]	강원도 산업발전 종합구상도158
[그림	63]	일본 주부지방 및 아이치현 위치165
[그림	64]	아이치현 내 세라믹 분야 대표기업 목록168
[그림	65]	일본 파인세라믹 센터 조직도
[그림	66]	일본 파인세라믹 센터 전경172
[그림	67]	아이치현 도자기공업 협동조합 전경
[그림	68]	경남 세라믹산업 SWOT 분석 ···································
[그림	69]	경남 세라믹산업 육성 비전 · 목표 및 추진전략 183
[그림	70]	경남 세라믹산업 육성 로드맵209

I. 연구 개요

1. 세라믹 개요 및 중요성

- □ 세라믹은 광물에 열을 가하여 만든 비금속 무기재료를 총칭하며, 기존소재 한계를 극복할 수 있는 다양한 특성을 토대로 다양한 분야에서 활용됨1)
 - O [전통 세라믹] 도자기, 시멘트, 타일, 유리 등 과거부터 현재까지 일상 생활 전반에 활용되는 소재를 의미함
 - [전자 세라믹] 휴대폰, 디스플레이 등 전자·정보통신 분야에 활용되는 세라믹 핵심소재를 의미함
 - O [바이오 세라믹] 인공장기, 생체인식·진단 소재 등 생명공학 분야에서 활용되는 세라믹 소재를 의미함
 - [엔지니어링 세라믹] 자동차, 기계, 우주·항공, 로봇 등에 활용되며 구조적 특성이 강조되는 세라믹 부품 소재를 의미함
 - [에너지·환경 세라믹] 에너지 생산 및 저장, 환경정화, 촉매 등으로 활용되는 세라믹 소재를 의미함

[그림 3] 세라믹 특성 및 활용 분야

^{1) 2017} 세라믹 기술백서(한국세라믹기술원, 2017) 바탕으로 ㈜날리지웍스 재구성

- □ 세라믹은 과거부터 산업 현장의 다양한 한계 극복을 가능하게 함으로써 산업혁명을 견인해 왔으며, 4차 산업혁명에 있어서도 핵심 소재로 주목받고 있음
 - 세라믹 소재로 이루어진 내화벽돌은 다양한 합금 개발을 가능하게 하여, 원동력인 증기기관의 발명과 이를 바탕으로 한 기계화 혁명(1차 산업혁명)을 견인함
 - 세라믹 절연체 및 페라이트 등의 세라믹 자성소재는 발전기의 개발과 안정적인 전기에너지 관리를 가능하게 하여, 전기에너지가 이끈 2차 산업혁명을 견인함
 - 세라믹 콘덴서, 세라믹 디스플레이 패널 및 세라믹 기판 등은 컴퓨터의 핵심 소재·부품으로, 컴퓨터 인터넷 기반의 3차 산업혁명을 가능하게 함

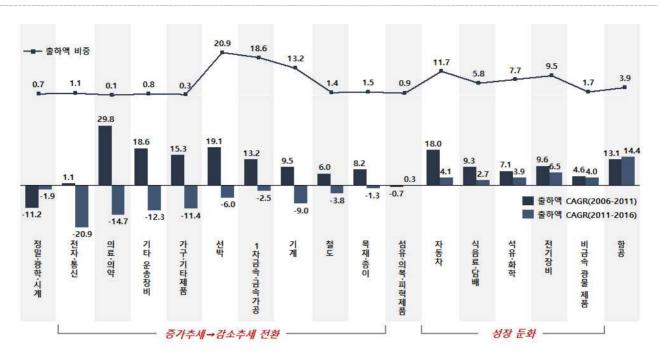
[그림 4] 산업혁명을 견인한 세라믹

- O 4차 산업혁명의 핵심기술인 3D프린팅, 사물인터넷, 로봇·인공지능 기술의 실현에 있어 핵심 소재·부품으로 세라믹이 활용되고 있음
 - 세라믹 기반의 3D 프린팅 소재와 이를 활용하는 3D 프린터가 활발히 개발·활용되고 있음
 - 세라믹 기반의 고밀도 에너지 저장소재, 웨어러블 기기용 플렉서블 에너지 저장·변환 소재, 세라믹 센서 및 통신소자 등은 사물인터넷을 가능하게 하는 핵심 소재·부품임
 - 로봇·인공지능 기술 실현을 위한 고용량 에너지 저장소재, 광학 이미징 부품, 경량·고강도 복합재료, 지능형 반도체 등도 세라믹을 활용하고 있음

[그림 5] 4차 산업혁명의 핵심 소재·부품인 세라믹

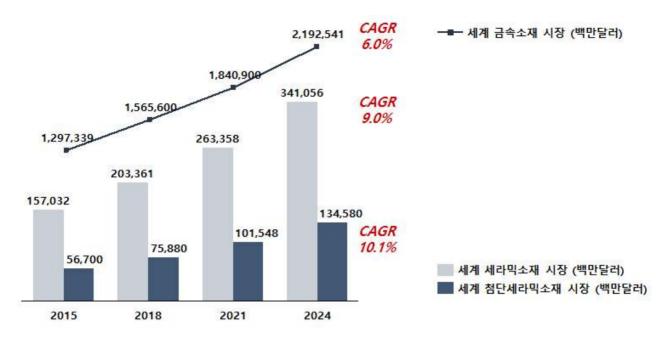
- □ 우리 사회의 주요 메가트렌드에 대응하기 위해서는 세라믹을 활용한 기존 소재의 한계 극복이 필수이며, 이는 글로벌 세라믹 소재·부품 수요 확대로 이어질 것으로 예상됨
 - [에너지 효율] 세라믹은 극한환경에서의 내구성, 에너지 저장·변환 기능성, 경량 소재로서의 활용성 등을 바탕으로 에너지 효율 제고에 기여할 수 있음
 - [환경 보호] 세라믹은 소재의 생산부터 폐기까지의 전주기 과정에서 타 소재 대비 환경오염 물질의 발생이 적으며, 세라믹 소재를 활용해 다양한 오염물질을 흡착·자원화 할 수 있어 환경보호에 기여할 수 있음
 - O [초연결] 세라믹 기반의 초소형 에너지 저장 소재는 다양한 사물인터넷 기기를 작동시키는 에너지원이 되며, 세라믹 센서는 다양한 환경에서의 데이터 획득을, 세라믹 무선통신 소자는 획득된 데이터의 송수신을 가능하게 함
 - [인구 고령화] 세라믹 소재의 인체 친화적 특성으로 인해 인공관절 등 다양한 바이오 소재로서 활용 가능하며, 기능성 화장품 등의 원료이자 생활환경의 유해물질 저감에 활용되는 등 인구 고령화에 다양한 측면에서 대응할 수 있음

[그림 6] 메가트렌드 대응에 있어 세라믹의 중요성



2. 연구 수행 배경

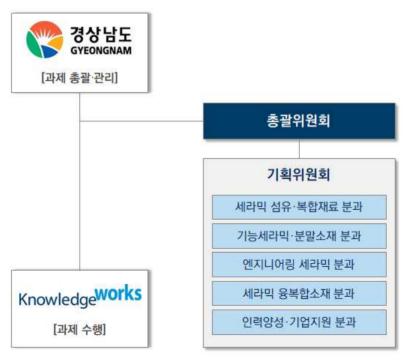
- □ 경상남도는 제조업 중심의 산업구조가 형성되어 있으나, 최근 제조업 경쟁력이 약화되고 있음²)
 - 경상남도는 전국 16개 시·도 중 2016년 기준 제조업 부가가치 규모(42조 원) 4위, 제조업 비중(42.8%) 5위로, 제조업 중심의 지역임
 - 경상남도의 제조업 부가가치는 2011년 까지 지속적으로 성장해 왔으나, 이후 하락추세에 있음
 - 2001년부터 2011년까지 경상남도 제조업 부가가치는 연평균 7.2% 성장하였으나, 2011년 이후 2016년까지 연평균 1.3%의 감소 추세임
 - 2011년 이후 2016년까지 전국 제조업 총부가가치는 연평균 3.0% 성장함
- □ 경상남도의 제조업 중에서도 비중이 높은 선박, 금속, 기계, 자동차 산업의 경쟁력이 약화된 것이 경상남도 제조업 전반의 경쟁력 약화 원인이 됨3)
 - 선박 분야 출하액은 2006년부터 2011년 까지 연평균 19.1% 성장하였으나, 2011년 이후 2016년 까지는 연평균 6.0% 감소함
 - O 1차 금속 및 금속가공 분야 출하액은 2006년부터 2011년 까지 연평균 13.2% 성장하였으나, 2011년 이후 2016년 까지는 연평균 2.5% 감소함
 - O 기계 분야 출하액은 2006년부터 2011년 까지 연평균 9.5% 성장하였으나, 2011년 이후 2016년 까지는 연평균 9.0% 감소함
 - 자동차 분야 출하액은 2006년부터 2011년 까지 연평균 18.0% 성장하였으며 2011년 이후 2016년 까지도 연평균 4.1% 성장하였으나, 전 기간 대비 성장 둔화됨


²⁾ 지역소득(통계청) 바탕으로 ㈜날리지웍스 분석

³⁾ 광업제조업조사(통계청) 바탕으로 ㈜날리지웍스 분석

[그림 7] 경상남도 제조업 출하액 성장률 및 출하액 비중(2016년 기준)

- □ 최근 세라믹 소재는 기존 소재가 보유하지 못한 다양한 구조적·기능적 특성을 바탕으로, 기존 제조업의 경쟁력 강화에 기여할 수 있는 소재로 주목받고 있음
 - O 기존 소재의 한계 극복(경량화, 내구성 강화, 기능성 강화 등) 차원에서 세라믹 소재에 대한 관심 및 수요가 증가하고 있음
 - O 세라믹 소재 시장규모 또한 향후 금속소재 대비 높은 성장률을 보일 것으로 전망됨
 - 2015년부터 2014년 까지 전세계 금속소재 시장은 연평균 6.0% 성장할 것으로 예상되는 반면, 전세계 세라믹소재 시장은 동기간 동안 연평균 9.0% 성장할 것으로 예상됨
 - 세라믹소재 중에서도 첨단세라믹 소재 시장은 동기간동안 더 높은 성장률(연평균성장률 10.1%)을 보일 것으로 예상됨



[그림 8] 전세계 세라믹 및 금속 소재 시장 규모 및 전망

- □ 한국의 세라믹 기술 분야 대표 연구기관인 한국세라믹기술원이 2015년 경상남도(진주)로 이전함에 따라, 재료연구소를 비롯한 도내 혁신기관과의 시너지를 통해 경상남도 세라믹 산업 육성을 도모할 수 있는 기반이 조성됨
 - 한국세라믹기술원은 산업통상자원부 출연 연구기관으로 세라믹 연구개발, 시험평가, 기술지원 등을 수행하며, 2015년 3월 경상남도 진주 혁신도시로 이전함
 - O 재료연구소는 과학기술정보통신부 출연 연구기관으로 경상남도 창원에 위치하고 있으며, 소재 전반에 대한 연구개발, 시험평가, 기술지원 등을 수행함
 - 이밖에, 세라믹 관련 전공을 보유한 창원대학교(창원), 경상대학교(진주) 등이 경상남도에 소재하고 있음

3. 연구 수행 체계

- □ [경상남도] 연구용역 과제 총괄 및 관리 기관으로써 중간·최종 결과물의 검수 및 연구과제 추진 방향에 대한 검토의견을 제시함
- □ [(주)날리지웍스] 연구용역 과제 수행 기관으로써 과제 중간·최종 결과물 산출을 전담하고, 결과물의 품질을 보증함
- □ [총괄위원회] 연구용역 과제 수행 전반에 관한 자문기구로써 주요 의사결정 과정에 있어 평가를 담당하며, 중간·최종 결과물에 대한 검토의견을 제시함
 - 세라믹 관련 기업체 임직원, 지역정책 · 산업 전문가, 세라믹소재 전문가 등으로 구성함
- □ [기획위원회] 경상남도 세라믹산업 육성을 위해 추진되어야 할 세부 과제(R&D 및 비 R&D) 기획을 담당함
 - O 경상남도 세라믹산업 육성 방향에 부합하는 경상남도 지역 산·학·연 전문가로 구성함

[그림 9] 연구 수행 체계도

[표 1] 총괄위원회 구성

구분	성명	소속 및 직위
1	조현준	경상남도 국가산단추진단 단장
2	이정환	재료연구소 소장
3	서원선	한국세라믹기술원 선임본부장
4	조유섭	경남테크노파크 정책기획단 단장
5	김철진	경상대학교 교수
6	배동식	창원대학교 교수
7	김성진	한국과학기술기획평가원 지역혁신정책팀장
8	김재육	㈜쎄노텍 연구소장
9	김영수	산업연구원 지역발전연구센터 소장
TL 🗆 OI OI	권형주	한국세라믹기술원 연구기획실 수석연구원
자문위원	김홍주	경남테크노파크 산업기획팀 팀장

[표 2] 기획위원회 구성

분과	성명	소속 및 직위
	조광연	한국세라믹기술원 세라믹섬유복합재센터 책임연구원
세라믹 섬유	이두진	한국세라믹기술원 세라믹섬유복합재센터 선임연구원
· 복합재료	박종만	경상대학교 나노신소재공학부 교수
	신현규	㈜코오롱테크컴퍼지트 이사
	정현성	한국세라믹기술원 전자융합소재본부 선임연구원
기능세라믹	신태호	한국세라믹기술원 에너지환경소재본부 선임연구원
분말소재	배성환	경남대학교 나노신소재공학부 교수
	박정주	(주)한경TEC 연구소장
	오윤석	한국세라믹기술원 엔지니어링세라믹센터 책임연구원
엔지니어링	한윤수	한국세라믹기술원 엔지니어링세라믹센터 책임연구원
세라믹	홍정규	경남테크노파크 정책기획단 선임연구원
	이용민	㈜낙우산업 대표이사
	최종진	재료연구소 분말/세라믹연구본부 책임연구원
세라믹	한병동	재료연구소 분말/세라믹연구본부 책임연구원
융복합소재	이순일	창원대학교 신소재융합공학부 교수
	한상철	㈜고려이노테크 팀장
	이윤기	경상대학교 나노신소재공학부 교수
인력양성	이순일	창원대학교 신소재융합공학부 교수
기업지원	임상헌	경남테크노파크 인재개발팀 팀장
	김홍주	경남테크노파크 산업기획팀 팀장

4. 연구 수행 경과

- □ 국내외 세라믹 산업 현황 및 여건 분석을 수행함
 - O 세라믹 산업 정의 및 특성 분석 2017.10.17. ~ 2017.11.12.
 - 전통세라믹 및 첨단세라믹 관련 세부산업을 정의하고 세부 산업별 시장을 파악함
 - 국내 세라믹 산업 현황 파악을 목적으로 세라믹 관련 통계청 산업분류 연계작업을 수행함
 - O 국내·외 세라믹 산업(시장) 분석 2017.11.13. ~ 2017.12.10.
 - 전세계 세라믹 세부 분야별 시장규모 및 성장 추세를 파악함
 - 국내 세라믹 시장규모 및 성장 추세를 파악함
 - 경상남도 세라믹 산업 현황 및 수요산업을 파악함
 - O 국내 세라믹 연구개발 현황 분석 2017.12.11. ~ 2018.01.14.
 - 경상남도 세라믹 연구현황(특허·논문) 및 핵심 기관 확인
 - 경상남도 내 세라믹 관련 연구개발 추진 중인 기업 목록 확보
 - O 총괄위원회(1차)를 통한 분석 결과 및 용역 추진방향 검토 2017.12.18.
- □ 국내외 세라믹 산업 클러스터 사례 분석을 수행함
 - O 세라믹 산업 클러스터 정의 및 분석대상 도출 2018.01.01. ~ 2018.01.31.
 - 국내 세라믹 클러스터 조사대상(강원도 강릉, 전라남도 목포) 설정 후 해당 지역 주요기관·세라믹 관련 산업현황 파악함
 - 해외 세라믹 클러스터 조사대상(일본 아이치현 나고야) 설정 후 해당 지역 주요기관·세라믹 관련 산업현황 파악함

- O 국내 세라믹 산업 클러스터 방문조사 및 심층분석 2018.02.18. ~ 2018.03.04.
 - 주요기관(강원TP 세라믹신소재센터, 전남TP 세라믹산업종합지원센터) 방문조사 및 인터뷰를 추진함
 - 추가 문헌분석을 통해 배후단지 조성, 시제품 제작 지원 인프라, 입주기업 현황 등을 파악함
- O 해외 세라믹 산업 클러스터 방문조사 대상기관 설정 2018.02.01. ~ 2018.02.17.
 - 일본 아이치현 나고야 지역 주요기관 대상으로 방문조사 협조 요청을 통해 방문기관을 최종 확정함
 - 일본 아이치현 나고야 지역 방문조사 세부 일정계획을 수립함
- O 해외 세라믹 산업 클러스터 방문조사 및 심층분석 2018.03.05. ~ 2018.03.17.
 - 일본 아이치현 주요기관(중부경제산업성, 일본 파인세라믹센터, 세라믹 공업 협동조합, 아이치산업기술종합센터) 인터뷰를 추진함
- □ 세라믹 기업 및 수요기업에 대한 조사 분석을 수행함
 - 경상남도 세라믹 기업 및 수요기업 기초 목록 도출 2018.01.15. ~ 2018.01.28.
 - 통계청 경제총조사 원시데이터(표준산업분류 기준) 활용하여 세라믹 기업 및 수요기업 목록을 도출함
 - 특허분석을 활용해 경제총조사(표준산업분류 기준)으로 도출되지 않은 세라믹 기업 목록을 추가로 발굴함
 - 기업 현황조사를 통한 조사대상 세라믹 기업 목록 확정 2018.01.29. ~ 2018.02.11.
 - 신용평가사 기업 DB를 활용하여 기업체 연락정보, 홈페이지 및 세부 사업내용을 파악함
 - 기업별 홈페이지 추가 조사를 통해 첨단세라믹 기업 목록 도출함

- O 세라믹 기업 설문조사서 개발 및 설문조사 수행 2018.02.12. ~ 2018.04.01.
 - 설문조사서 개발 후 Web 기반 설문조사 시스템을 구축함
 - 설무조사를 통해 세라믹 기업 애로사항 및 향후 사업계획을 파악함
- O 기업 현황조사를 통한 조사대상 세라믹 수요기업 목록 확정 2018.02.19. ~ 2018.03.11.
 - 신용평가사 기업 DB를 활용하여 기업체 연락정보 및 기초 현황, 세부 사업내용을 파악함
 - 기업 현황 및 세부 사업내용을 바탕으로 세라믹 수요기업 목록을 도출함
- O 세라믹 수요기업 설문조사서 개발 및 설문조사 수행 2018.03.12. ~ 2018.05.20.
 - 설문조사서 개발 후 Web 기반 설문조사 시스템을 구축함
 - 설문조사를 통한 수요 기업 향후 사업계획 및 지원 정책 수요를 파악함
- O 기업 심층 인터뷰 2018.03.19. ~ 2018.05.27.
 - 설문조사를 통해 확인된 기업 애로사항, 정책적 지원 수요 및 세라믹 관련 사업 추진계획 관련된 추가 정보를 확인함
- □ 경남 세라믹 산업 육성 방향 및 전략을 수립함
 - O 비전 · 목표 · 전략방향 및 중점 추진과제 도출 2018.03.19. ~ 2018.04.08.
 - 세라믹 산업 현황 및 여건 분석, 세라믹 산업 클러스터 사례, 세라믹 기업 및 수요기업 조사 결과를 종합하여 도출함
 - O 총괄위원회(2차)를 통한 전략방향 및 중점 추진과제 도출 방향 검토 2018.04.06.
 - O 기획위원회를 통한 세부사업 계획 도출 2018.04.09. ~ 2018.05.20.
 - 산학연 전문가로 구성된 기획위원회(5개 분과)를 구성 후, 기획위원회 분과별 세부사업 계획(안)을 도출함
 - O 경남 세라믹 산업 육성전략 설명회(1차) 통한 대외 의견 수렴 2018.04.26.
 - 총괄위원회(3차)를 통한 세부사업 도출결과 검토 및 우선순위 평가 2018.05.29.

- O 총괄위원회(3차) 검토의견 · 평가결과 반영 및 보완 2018.06.01. ~ 2018.07.31.
- 경남 세라믹 산업 육성전략 설명회(2차) 통한 대외 의견 수렴 2018.08.28.
- 경상남도 경제부지사 추진경과 보고 및 수정 보완 의견 수렴 2018.09.07.
 - 경남도내 기업 수요가 명확한 분야를 대상으로 지원되어야 함
 - 해외시장 진출 · 신시장 창출이 가능한 분야를 대상으로 지원되어야 함
- O 경상남도 내 주요기업 심층 인터뷰를 통한 의견 수렴 2018.09.10. ~ 2018.10.12.
 - 전통세라믹 분야 2개 기업, 세라믹 분말·소결 분야 3개 기업, 세라믹 섬유 · 복합재료 분야 3개 기업, 세라믹 코팅 분야 3개 기업 대상으로 인터뷰 수행
- O 심층 인터뷰 결과를 반영한 세부 사업내용 수정 2018.10.13. ~ 2018.10.23.
- O 사업내용 수정(안)에 대한 기획위원회 검토 2018.10.24. ~ 2018.10.31.
- O 기획위원회 검토의견 반영 및 최종보고서 작성 2018.11.01.~2011.11.09.
- O 최종 보고 수행 2018.11.12.

II. 세라믹 관련 사회 · 정책 현황

1. 세라믹 관련 사회적 이슈 현황

- □ 과학기술예측조사에서 도출한 우리나라 주요 이슈 중 상당수 이슈의 해결에 세라믹이 기여할 수 있는 것으로 판단됨4)
 - O 과학기술예측조사에서는 2040년까지의 중장기적 관점에서 우리사회가 주목해야 할 미래사회 변화 트렌드를 도출함(5대 메가트렌드, 40개 트렌드)
 - 도출된 트렌드와 관련하여 우리 사회에 큰 영향을 미칠 것으로 예상되는 이슈를 발굴하고, 한국에서 특히 중점적으로 관심을 가져야 할 이슈를 주요 이슈로 선정함(총 100대 이슈 중 40대 주요이슈가 선정됨)
 - 주요 이슈와 관련된 구체적인 경제·사회적 수요(니즈)를 도출하였으며, 이를 바탕으로 연구진은 세라믹이 대응할 수 있는 수요(니즈)를 선별함
 - 40대 주요 이슈 중 27개 이슈 해결에 있어 세라믹이 직접적으로 기여할 수 있는 이슈로 선별됨

세라믹 관련 주요 이슈

사회인프라 노후화로 인한 대형 재난 발생 가능성

공공안전 인프라에 대한 사회적 관심 고조 3 원자력 안전성 4 기후 변화로 인한 생태계 변화 뉴로 정보의 활용 5 기후 변화 대응을 위한 물관리 고도화 6 7 8 친완경 산업구조로 재편 디바이스간 지능화된 의사소통 9 10 11 무인로봇 부대 등 국방체계 변화 가사 및 서비스 로봇의 대중화 무인 이동체로 인한 물류 및 교통 체계 개편 12 초고속 이동을 위한 운송시스템 개편 13 14 15 자원의 무기화 32.5% 67.5% 새로운 非(비)전통 자원 탐색 (13)(27)신재생 에너지 개발 보급 확대 16 17 18 IT 기술을 이용한 범죄 도시 집중화·거대화 문제 전통적 제조 방식의 전환 19 고숙련 정밀 제조 및 첨단 제조 기술의 중요성 20 우주 항공 산업 성장 재해 피해 최소화를 위한 대응 세라믹 관련 이슈 우리나라 주력 기술 및 산업 경쟁력이 추월당할 가능성 22 신소재, 나노물질 등의 안전성 문제 고령층 대상 산업 기회 확대

주요 이슈 해결방안

	- A	1 11	11		_
고기	능성 건	축 자재(스마트	콘크리	트 등)
	유해 전	자파 차	데 세리	믹 소재	
방사능	차폐 .	고내열/	내방사	성세라	및 소재
이선	난화탄소	포집/자	장용	네라믹스	느재
되	신경 이식	용 인체	친화	덕 전극3	사
	수처리	용세라	및 분리	막 소재	
	페열.에	너지 회:	주 세리	믹 소재	
	X	라믹 선	징 조기	QI.	
	고내열	경량 세	라믹복	합재료	
- 2	고에너지	밀도에	너지 기	데장 소지	
무압	긴 항공기	용 경령	세라	및 복합지	료
	경량/	/고내열	세라믹	소재	
	Ó	토류 대	체소	덑	
	새로운	非(비)전	선통 자	원 탐색	
수소	- 저장 4	오재, 세리	나믹 연	료전지 :	소재
	생체	인식용	세라믹	소재	
	저비용	, 고기능	성건	축 소재	
	세리	믹 3D 프	프린팅	소재	
***	초정밀 기	구공용 서	라막	일삭 소지	ii ii
	극한환	경 대응	세라	및 소재	
	세리	및 계측	/센싱	소재	
	세라	막기반 4	신소재	/부품	
2	안전성,	환경 친	화적 서	라믹소	재
	1,44,1/4	대체용	Control of the last	-	
	정밀의	료기기용	용 세라	믹 소자	
생	할용 환경	경호르몬	free A	4라믹 소	재
ALCH	칭 무기	대응 고	내열/니	방사성	소재

[그림 10] 세라믹 관련 주요 이슈 및 해결 방안

고품질 의료 서비스에 대한 수요 확대

남북한 격차의 지속적 심화

23 24 25

26

⁴⁾ 제5회 과학기술예측조사(한국과학기술기획평가원, 2017) 바탕으로 ㈜날리지웍스 분석

[표 3] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(1/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
[1] 사회 인프라	노후 인프라의 수명 연장	Ο	고 기능성 건축자재
	사회 인프라에 대한 IoT기반 모니터링시스템	0	스마트 콘크리트 등
노후화로 인한 대형 재난	사회 인프라에 대한 체계적 진단 시스템	0	계측용 세라믹 소자
발생 가능성	사회인프라에 대한 안전 규제 강화	Χ	
	위성통신기반의국가재난망구축	Х	
[2]	미세먼지와 황사 감축	Х	
공공안전	유해파 감지 및 차단	0	유해 전자파 차폐 세라믹 소재
인프라에 대한 사회적	인간중심 인프라 기반 개발	Х	
	사회적 약자 안전 확보를 우선하는 공공인프라	Х	
	건설 안전 기준의 선진화 및 국제화	Х	
	고준위 폐기물 영구처분	0	방사능 차폐 세라믹 소재
[3] OLTE	원전 사고 대응을 위한 로봇 개발	0	고내열/내방사성 세라믹 소재
원자력 안전성	재순환 핵연료주기 가능 차세대 원자로개발	0	고내열/내방사성 세라믹 소재
	노후 원전 해체(폐로) 기술	0	방사능 차페 세라믹 소재
F 41	RFID-스마트폰 연계를 통한 식품 이력 추적 시스템	Χ	
[4] 식품	스마트 패키징 (신선도, 안전성 체크)	Χ	
고 ^{그 ద} 안전성	비파괴 on-site 위해인자 센싱	Χ	
	유전자변형식품(GMO)에 대한 안정성 확보	Х	
	병충해 대응	Х	
	CCUS(이산화탄소 포집, 활용 및 저장)	0	CO2 포집/저장용 세라믹 소재
[5] 기후 변화로	생태계 복원	0	친환경 호안/해안 구조물 등
기후 신화로 이한 생태계	기후 변화에 대한 장단기 예측	Χ	
변화	식품 가공, 저장 기술 개선	Х	
	내재해성 품종 개발	X	
	빅데이터 기반 스마트팜	Χ	
[6] 첨단 생명공학 기술 적용 범위	병원성 미생물 및 바이러스에 대한 on-site 판별	Χ	
	문제 장기 대체를 위한 복제 또는 제작	Χ	
	유전자 가위 기술 활용	X	
	유전자 조작 합성 미생물에 대한 승인	X	
	생명윤리 및 의료불평등에 대한 논의 확대	Χ	

[표 4] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(2/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
	뇌지도 구축 완성	Χ	
	진보된 뇌영상	0	의료 영상기기용 고성능 자성소재
	빅데이터를 이용한 신경과학 개발	Χ	
	자극을 통한 뇌기능 조절	0	뇌신경 이식용 세라믹 전극
[7]	뇌-컴퓨터 접속 기술 활용 영역 확대	0	뇌신경 이식용 세라믹 전극
뉴로 정보의 활용	감성 인터페이스	Χ	
이 그 의 길이	마인드 해킹 방지(뉴로 정보 보안)	Х	
	기억 저장 및 변경	Χ	
	한국형 뉴로 정보 DB 구축	Χ	
	뉴로 정보 보안 기술 및 정책	Χ	
	저비용 해수 담수화	0	세라믹 분리막 소재
[8]	스마트 물 관리 시스템(Smart Water Grid)	Χ	
기후 변화	폐수 재활용	0	세라믹 분리막 소재
대응을 위한 물관리	녹조, 적조 등 제거	0	녹조/적조 제거용 세라믹 분리막
고도화	수질 모니터링 시스템	0	수질환경 측정용 세라믹 센서
·	인공 강우	Χ	
	전기차 배터리 효율 증대	0	고효율 2차전지 세라믹 전극
	친환경 저탄소 연료 충전 인프라	0	수소 생산·저장용 세라믹 소재
	전통 화학 공정의 친환경 바이오 공정으로 대체	Χ	
[9]	건설 폐자재의 친환경적 재생, 처리	0	건설 폐자재 재생 세라믹 소재
친환경 산업구조로	신재생에너지 생산성 확보	0	저비용 태양열에너지 소재 등
전립구오로 재편	자동차 연비 증대 (초경량 자동차 등)	Х	경량 세라믹 복합재료
"-	초경량 자동차 강판	Χ	
	수소, 전기 등 친환경 자동차 확대를 위한 제도적 지원	Х	
	제조 설비의 에너지 효율화	0	고온 공정용 고내열 세라믹 소재
	디바이스 자가 진단	Χ	
[10]	네트워크 해킹 방지(보안)	Х	
디바이스간 지능화된	빅데이터 분석 및 활용	Χ	
기능화된 의사소통	센싱 고도화	0	세라믹 센서 소재
	IoT기술 표준화	Х	

[표 5] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(3/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
[11] 국방체계	국방분야 AI 알고리즘 개발	Х	
	무인로봇 부대 운용을 위한 전술 전문가 양성	Χ	
변화	테러 예방 및 대응을 위한 로봇	0	고내열 경량 구조재(세라믹 섬유)
	가사·비서·기사·육아 등 개인지원 로봇 서비스	Χ	
[12]	오지 탐사 및 재난 구호용 로봇	0	경량 구조재, 고밀도 에너지저장 소재
가사 및 서비스	로봇 감정 처리 및 의식 점검 시스템	Χ	
로봇의	폐로봇 처리 및 재활용	Χ	
고 대중화	로봇 운영 및 감독기관	Χ	
	로봇 결정의 윤리문제에 대한 공론	Χ	
	네트워크 오류 발생 자동 차단	Χ	
[13]	ICT 기반 자동화 시스템 오류 복원	Χ	
자동화	ICT 기반 자동화 시스템 자가 진단	Χ	
시스템의 확산과	디바이스 행동 패턴 분석 및 모니터링	Χ	
부작용	자동화 시스템 오류 발생시 책임 소재	Χ	
	과학기술 기반의 새로운 일자리 창출 방안	Χ	
[14]	무인 이동체 신호 체계 및 통제 시스템	Χ	
무인 이동체로	무인 이동체에 탑재된 유해물질 검색시스템	Χ	
인한 물류 및 교통 체계	무인 이동체의 자율주행	0	경량 구조재, 센싱 소재
보통 세계 개편	무인 이동체 사고 처리 및 보험 제도	Χ	
[15]	백신 개발을 위한 시스템 생물학	Χ	
백신의	Universial 감염병 백신 개발	Χ	
무기화	생화학 테러 대비 백신	Χ	
[16]	초고속 운송시스템 이용자의 인체 안전성 확보	Χ	
초고속	초고속 운송시스템이 생태계 및 환경에 미치는 영향 최소화	Χ	
이동을 위한	초고속 이동체 하드웨어 설계 및 제작	Χ	
운송시스템 개편	초고속 이동체용 최첨단 소재 개발	0	경량, 고내열 구조재
	초고속 이동체 부품 이상 자동 감지	0	자가 감지 소재, 센싱 소재
[17] 자원의 무기화	희토류 등 희귀 자원의 대체 소재 개발	0	희토류 대체 자성 소재
	심해저, 극지 자원 개발	0	고내구성 세라믹 구조재
	대체 에너지 개발	0	세라믹 연료전지 등
	자원확보를 위한 다자간 외교 정책	Х	
	통일 대비 북한 자원 활용 방안 수립	Χ	

[표 6] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(4/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
	내고온 내재해성 품종개발	X	
	대체 식량 개발	Х	
[18]	기후 등 빅데이터 기반 스마트 농장	Χ	
식량의	고부가가치 유전자원 개발	Χ	
무기화	국내 토종 종자 보존 및 복원	Χ	
	안정성이 확보된 GMO 종자 개발	Х	
	유전자원 접근 및 이익공유(ABS) 대응 체제 마련	Χ	
	바이오 에탄올 효율 향상	Х	
	생산성이 높은 바이오에너지 개발	Х	
[19]	폐기물 및 폐자원 자원화	Х	
신재생 에너지 개발	스마트 그리드 구축을 통한 에너지 효율적 배분	Χ	
에디서 게르 보급 확대	전력저장장치(ESS) 보급 확대	0	고효율 2차전지 세라믹 전극
	신재생 에너지 비중 확대	Х	
	신재생에너지 인프라 구축	Х	
[20]	비전통연료 탐사 및 채굴	Χ	
새로운	셰일가스 산업 기반	Χ	
비전통 자원	해수 용존 자원 물질 추출	0	해수 용존자원 회수용 세라믹 흡착제
탐색	Social Network를 위한 다양한 신서비스 개발	Х	
[21]	오감만족 가상현실	Х	
가상	가상 공간에서의 개인 식별	Χ	
공간에서의	가상 세계 설정을 통한 시뮬레이션 연구	Χ	
사람간	사이버 거래 및 통화 수단	Х	
연결성 확대	가상세계의 거버넌스 개념	Х	
	거짓 정보 판별을 위한 가용 데이터 선별	Х	
	데이터 이동 실시간 모니터링	Χ	
[22] 데이터의 빠른 확산 및 막대한 정보 유통	데이터 외국 전송 허가/관리 시스템	Χ	
	양자 컴퓨팅	Χ	
	빅데이터 처리 및 분석 고도화	Χ	
	패스트 데이터 처리 및 분석	Χ	
	Data거래소 등 생태계 조성을 위한 지원 및 법제도	Χ	
	정보 보호와 데이터 거래 활성화 간의 딜레마 해소	Χ	
	정보 격차 해소 방안 마련	Х	

[표 7] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(5/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
	비대칭성 축소를 위한 Open Source 확대	Х	
[23]	정보의 생성단계부터 개인정보를 보호하는 데이터 익명화	Χ	
초연결 기반	접근 제어와 정보 암호화 등 보안	Х	
빅브라더	자기 정보의 통제	Χ	
출현	대형 플랫폼 서비스의 공정성, 윤리성 등 판정	Χ	
	데이터의 독점적 보유 및 활용 방지	Х	
	테러 방지 기술 및 시스템 고도화	Х	
	IT,빅데이터 기반 범죄 예측	Х	
	Quantum Computing에 의한 암호체계 고도화	Х	
[24]	인간 인식(생체, 칩 등)기술 고도화	0	생체 인식용 세라믹 소재
IT 기술을	사이버 공간 위험의 실시간 모니터링	Х	
이용한 범죄	IT기술을 활용한 위변조 판별	Х	
	디지털 포렌식 기술의 고도화	Х	
	테러 방지를 위한 국제 네트워크 시스템	Χ	
	사업자가 보안을 책임지는 정책	Х	
	가상현실 기술의 고도화를 통한 온라인 교육 개선	Х	
	빅데이터 기반 개인 교육 관리, 성취도 평가 및 멘토링	Х	
[25]	개인 맞춤형 스마트러닝 시스템	Х	
교육 체계	융합 교육을 위한 구체적 장기 방안 마련	Х	
개편	인성, 윤리, 사회성 교육 강화	Х	
	평생교육 체제 마련	Х	
	정규 학력 분야 STEAM 교육 확대	Х	
	가상현실을 활용한 스마트워크 시스템 고도화	Х	
	도시 생태계 관리 기술	Х	
	거대 도시화로 인한 공해와 기후 변화 대응 기술	0	수처리용 세라믹 필터(다공성) 소재
	실시간 도시 교통, 물류 자동제어 시스템	Х	
	초고층건축물설계·시공고도화	0	고기능성 건설 자재
문제	스마트 에코 시티 구현	0	에너지 자립 건축용 자재/소재
	싱크홀 예측 및 방지	0	지표, 지하공간 계측/센싱 소재
	도시 빈곤층 구제 정책	0	저비용 건설 소재

[표 8] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(6/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
	3D 프린터 소재 기술 고도화	0	3D 프린팅 세라믹 소재
	초고속·초정밀3D프린팅	Х	
[27]	3D 프린팅 제조 관련 플랫폼	Χ	
전통적 제조 방식의	바이오 프린팅	Х	
전환	3D 이용 범죄 방지	Х	
	3D 기술 표준화 주도	Χ	
	3D 설계도 등 지적 재산권 보호	Х	
[28]	첨단 정밀 제조 기술 고도화	0	정밀 가공용 절삭 소재
고숙련 정밀	측정 및 생산 장비 원천 기술 개발	0	세라믹 센서 소재
제조 및	IT·SW기반제조고도화	0	세라믹 센서 소재
첨단 제조	정밀제조를 위한 소재·부품 기술 고도화	0	지능형 가공기계용 절삭 소재
기술의	고숙련 기술자 관리 및 지원	Х	
중요성	제조업 인력의 직업 재교육	Х	
	우주 및 항공 설계 국산화 기술 개발	Χ	
roo1	태양광 비행기 등 성층권 대상 기술 개발	0	태양전지 소재, 저온환경용 구조재
[29] 우주 항공	우주 행성에서 재배 가능한 작물 개발	Χ	
수무 성공 산업 성장	우주 관광	0	우주 비행체용 고내열, 단열 소재
	달 등 근접 행성 자원 탐사 및 활용	Χ	
	산업적 수요 확대를 위한 국가 차원의 지원	Χ	
	IoT, Nano tech 융합 기반 자연 재해 계측 경보 시스템	0	계측용 세라믹 소자
[30]	ICT기반 자동 복원	Χ	
재해 피해	지진 피해 저감 설계	0	내진 성능이 강화된 건축 자재
최소화를	기후 변화에 따른 해안 저지대 침수 예측 모델	Χ	
위한 대응	지반침하 예측 및 방지	0	계측용 세라믹 소자
	자연 재해에 대한 종합적이고 체계적인 대응 시스템	Χ	
[31] 주력 기술 및 산업 경쟁력이 추월당할	아날로그와 디지털 산업의 융합	Х	
	신성장동력 산업 체계적 지원	Х	
	주력산업 경쟁력 강화를 위한 핵심·원천기술 확보	0	세라믹 소재 활용 제조업 경쟁력 강화
구별경찰 가능성	기술 집약형 중소기업 육성	Х	

[표 9] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(7/8)

주요 이슈	니즈	세라믹 관련성	관련 내용
	NBIT 융합연구 활성화	Χ	
	기초과학 및 인문학 연구 지원 강화	Χ	
[32]	부처간 협업 시스템	Χ	
산업간 및 기술간 융합	학문 단위 구조 개편	Х	
가솔한 8 대	재교육/평생교육 시스템 확대	Χ	
	융합 기술 발전에 맞는 법규 재개정	Х	
	신규 융합형 서비스에 대한 네거티브 규제 도입	Χ	
[33]	나노 등 신소재의 인체 및 환경 안전성 측정	Χ	
신소재,	환경 친화적 신소재 및 나노 물질 개발	0	세라믹 소재 활용을 통한 환경 친화
나노물질 등의 안전성	장기적 관점의 나노 물질 안정성 연구	Χ	
문제	나노물질 안전성 평가 법제화	Х	
	고령층 대상 사고관리 시스템	Χ	
	고령층 대상 헬스케어	0	치아, 관절 등 인체 대체용 세라믹 소재
[34]	맞춤형재활·보조기구·로봇	0	세라믹 기반 경량 구조재료
고령층 대상 산업 기회	고령층 대상 UI 개발	Х	
의 선접 기회 의 확대	고령층 대상 문화 콘텐츠	Х	
"	평생교육 시스템 확립	Х	
	고령층을 위한 일자리 확보	Х	
	고기능 의료장비 개발	0	초음파용 세라믹 소자 등
	개인 맞춤형 의료서비스	Χ	
[35]	실시간 건강 체크 및 진단 서비스	Х	
고품질 의료	원격의료 서비스 고도화	Х	
서비스에 대한 수요	DNA분석을 통한 개인별 질병 예측 고도화	Х	
확대	의료불평등 완화를 위한 저렴한 의료기술 개발	Χ	
	의료보험제도 개편	Χ	
	의료관광 특구 등 고급 의료서비스 육성	Χ	
[36] 불임 및 난임 문제	습관성 유산 원인 파악 및 치료	Х	
	실시간 환경호르몬 측정	Χ	
	환경호르몬 제거	Χ	
	불임 원인 파악 및 치료	Χ	
	환경호르몬의 불임 영향성 규명	Х	
	환경호르몬 Free 제품	0	환경호르몬 free 세라믹 소재
	심리상담 지원 시스템	Х	

[표 10] 주요 이슈 및 니즈별 세라믹 관련성 및 세부 내용(8/8)

[# 10] # 411					
주요 이슈	니즈		관련 내용		
[37]	국제적 감염병 데이터베이스 구축	Χ			
감염병 확산	감염병 상시 예측·모니터링 시스템	Χ			
속도 증가 및 신종	변종 바이러스 여부의 신속한 판별	Х			
가 건 O 감염병 출현	감염병에 대한 신속진단 및 치료	Х			
	신종 감염병 출현 시 체계적인 대응	Χ			
[38]	북한 비대칭 전력 무력화 기술	0	방사능 차폐 세라믹 소재		
남북한 격차의 지속적 심화	북한 정보화를 위한 투자	Χ			
	남북한 격차에 대한 대비 방안 마련	Х			
	남북한 사회 문화 교류 확대	Х			
	가사의 자동화를 통한 가사 노동 경감	Х			
[39]	사회적 육아 시스템 확대	Х			
양성평등 가치의 실현	경력 단절 여성 취업 지원 확대	Х			
기시의 글전	과기분야 젠더혁신 실현	Х			
[40]	반려동물 의사 인지를 통한 케어 시스템	Χ			
자아 중심으로	1인 가구 형태에 적합한 서비스 및 상품 개발	Х			
거주 및 가족개념 변화	다양한 가족 형태에 대한 사회적 인정	Χ			
	거주지 중심의 공동체 활동 활성화	Х			

2. 신산업 육성 정책 현황

- □ (새 정부의 산업정책 방향) 산업경쟁력 약화 및 글로벌 경쟁 패러다임 변화에따른 문재인 정부의 산업정책임
 - O 주관부처: 산업통상자원부
 - 기존 성장전략의 한계로 산업 경쟁력이 약화됨에 따라 산업혁신뿐만 아니라 일자리·소득까지 고려한 성장전략의 필요성에 의해 도출된 정책임
- □ (혁신성장동력 추진계획) 혁신성장을 위한 연구개발 기반의 전략적 신산업 육성 정책으로 성장동력분야의 효율화 및 지원전략을 고도화한 정책임
 - O 주관부처: 관계부처 합동
 - 근거법령: 과학기술기본법 제9조, 제9조의2 및 제16조의5
 - O 미래성장동력특별위원회에서 확정한 '혁신성장동력 추진전략'에 따른 추진계획으로 국민이 체감할 수 있는 혁신성장의 목표 달성을 위해 과학기술혁신을 바탕으로 한 전략적 성장동력 육성정책임
 - O 지난 정부의 다양한 성장동력분야의 재조정을 통해 13대 혁신성장동력을 정의하고 분야별 특성을 고려한 지원전략을 수립함

- (1) 새 정부의 산업정책 방향
 - □ 문재인 정부의 산업 정책은 주력산업 고도화 및 신산업 창출, 상생협력 강화, 지역 거점 육성 등을 통해 혁신 경제 체제를 구축하고 포용적 성장을 이루고자 함
 - 새 정부의 산업정책은 함께 성장하는 세계 최고의 혁신국가 도약을 비전으로 혁신 경제 및 포용적 성장을 위해 3대 전략 및 6대 정책과제를 도출함

[그림 11] 새 정부의 산업정책 비전과 전략

- 새 정부는 혁신국가로 도약하기 위해 산업·기업·지역 혁신을 도모하고 성장을 위한 지원을 확대 하고자 함
 - (산업혁신) 신산업 창출 및 주력산업 고도화
 - (기업혁신) 미래 지향적인 상생협력 강화
 - (지역혁신) 혁신성장을 위한 지역 거점 육성
- □ 특히, 5대 신산업 선도 프로젝트 추진을 통해 주력산업의 고도화 및 신산업 창출을 도모하고자 함
 - O 5대 신산업 선도 프로젝트는 성장 가능성이 높고 국민 체감이 높은 산업을 대상으로 전략적인 지원을 통한 신산업 창출을 위해 선정한 산업으로 대상 분야는 다음과 같음
 - (미래 모빌리티 사회-전기·자율주행차) '20년 고속도로 자율주행 상용화, '22년 전기차 보급 확대 등
 - (초연결 사회-IoT 가전) 빅데이터, 인공지능 연계 IoT 가전 기술 개발, 가전/건설/통신/자동차/의료 등 융합 플랫폼 구축 등
 - (에너지 전환-에너지신산업) 분산형 발전확대를 통한 에너지신산업 창출, 첨단 전력 인프라 구축, 분산전원 연관 산업 육성 등
 - (수명 연장과 고령화-바이오·헬스) 빅데이터+AI기반 신약 및 의료기기·서비스 개발, AI기반 스마트 헬스테어 핵심기술 개발
 - (4차 산업혁명 두뇌와 눈-반도체·디스플레이) 후발국 격차 5년 이상 확보, 대규모 적기투자 및 차세대 기술 확보 병행 추진
 - O 선도 프로젝트별 특성에 따른 핵심기술 개발, 실증·사업화, 상생협력 등의 지원을 통해 조기성과 창출을 유도하고자 함
- □ 5대 신산업을 대상으로 연구개발 및 규제 개선, 인력양성, 금융지원, 표준 로드맵 구축 등을 통해 신산업 혁신성장 역량을 확충하고자 함

- O 5대 선도 프로젝트 분야 원천 기술 확보를 위한 연구개발을 지원하며, 기업의 시장진입 촉진을 위해 실증투자를 확대함
- O 신산업 분야에 대해서는 중장기 인력수급 전망을 통해 석·박사급 인재 육성을 추진함
- O 우수한 기술력을 바탕으로 한 신산업 분야 기업에 기술보증을 활용하여 사업화 자금 지원, 관련 민·관 공동 펀드 조성 등의 금융지원을 확대함
- □ 상생협력 강화를 위해 중견기업을 주요 성장 주체로 육성하고, 업종별 맞춤형 지원, 중견기업 특화 지원 등의 활동을 진행할 예정임
 - 국가 혁신 클러스터를 중심으로 한 지역 거점 중견기업을 육성하고, 지방기업 취업 활성화를 위한 지역별 채용의 장을 확대하고자 함
 - 중견기업 육성전략은 산업정책과 연계한 체계적인 지원을 확대하고, 분야별 특성을 고려한 지원 체계를 수립함
 - (자동차) 전기차·자율차 핵심부품 개발 중견기업 집중 지원, 대기업-협력사 공동 연구개발 및 해외 마케팅
 - (반도체·디스플레이) 반도체 장비·소재 패키지 개발 추진, 대기업-소재·장비 ·부품 협력사 공동 연구개발
 - (바이오·헬스) 글로벌 바이오 스타 기업 육성, 바이오 빅데이터 활용 신산업 창출
 - (석유화학) 중견기업 특성에 맞는 스페셜티 기업(첨단 정밀화학, 플라스틱 필름 등) 육성
 - (섬유·패션) 고기능성 화학섬유 및 산업용 섬유 중견기업 육성, 바이어 맞춤형 제품 공동개발 및 기술협력 추진
- □ 또한 혁신 성장을 위해 국가 혁신 클러스터를 육성하고, 지역 혁신 역량 확충을 위한 기반을 조성하고자 함
 - O 지역혁신을 선도할 수 있는 거점기업 유치를 위해 세제·보조금·지역개발 특례 등 인센티브를 제공하고 혁신기반 구축을 위한 지원을 확대함
 - O 거점 대학-기업-공공기관의 지역별 특성에 맞는 혁신 산업에 대한 공동 연구개발 및 실증프로젝트 등을 지원함

O 산업단지의 경우 연구개발 위주의 산학연 협력이 아닌 기업 간 제품기획·연구개발·생산·판매를 공동으로 하는 조합형 비즈니스 모델 구축을 통한 산업 거점 클러스터 육성을 지원함

(2) 혁신성장동력 추진계획

- □ 정부는 주력산업 고도화 및 신산업 육성을 위해 13대 혁신성장동력을 설정하고 분야별 특성을 고려한 맞춤형 전략 및 전주기 관리체계를 수립함
 - 혁신성장 선도사업, 4차 산업혁명 등 정부의 신산업 정책이 조기에 성과를 창출하기 위해 연구개발 기반의 전략적 육성 필요성에 따라 정책을 수립함
 - O 13대 혁신성장동력 및 정책과제는 다음과 같음

기 본야별 특성을 고려한 맞춤형 전략 마련 2 성장동력 분야에 대한 전주기(발굴·지원·평가) 관리체계 정착 항 역신성장동력의 국민체감 확대

정 책 1 조기상용화 1 신규분야 발굴·기획 2 사업·추진체계 개편 2 원천기술확보 3 성장동력 분석·평가 2 재난·안전 활용

[그림 12] 혁신성장동력 추진방향

- □ 13대 혁신성장동력의 특성에 따라 조기상용화와 원천기술확보 대상 분야를 구분해 설정하고 분야에 맞는 지원 체계를 구축함
 - O (조기상용화 분야) 최종 결과가 제품 혹은 서비스의 형태로 나타나며, 5년 내 상용화가 가능한 분야를 뜻하며, 해당 분야는 여건조성, 시장접근, 수요창출 분야로 나누어 세부적인 지원 방향성을 제시함
 - 여건조성 분야에는 자율주행차, 빅데이터, 맞춤형 헬스케어 등으로 구성되어 있으며, 규제 개선 및 비용 부담 완화를 위한 세제·금융 지원을 통한 신기술의 현장적용을 확대 하고자 함
 - 시장접근 분야는 스마트 시티, 가상증강현실, 신재생에너지 등으로 구성되어 있으며, 지역 전략산업과 연계한 대형 실증 프로젝트 추진을 확대 하고자 함
 - 수요창출 분야는 지능형 로봇, 드론(무인기) 등으로 신제품 공공 조달 및 구매 연계형 연구개발을 통한 트렉레코드를 제공함
 - O (원천기술 확보) 최종 결과가 핵심기술의 형태로 나타나는 분야로, 기술성숙도에 따라 산업확산 분야와 중장기연구 분야로 구분하여 지원함
 - 산업확산 분야는 차세대통신, 첨단소재, 지능형 반도체 등으로 구성되어 있으며, 타 산업분야에 적용을 위한 융합 제품·서비스 개발을 지원하고 상용화를 위한 시험·인증 인프라 및 중소기업 활용 인프라 조성을 지원함
 - 중장기연구 분야는 혁신신약, 인공지능 등으로 구성되어 있으며, 민간수요를 기반으로 기술개발 리스크가 높은 연구를 지원하고 혁신적 연구를 수행할 수 있는 제도적 환경을 조성함
- □ 첨단 소재는 원천기술확보 대상 분야로 관련 산업확산을 위한 지원 및 핵심 기술에 대한 중장기 연구를 지원함
 - O 첨단 소재 분야는 타이타늄, 알루미늄 등 수송기기용 산업소재 개발 및 첨단소재 가공장비·공구의 국산화를 목표로 타 분야와의 기술융복합 및 관련 인프라 구축을 지원함

- 첨단 소재 분야는 현재 수입 소재의 가공 형태의 산업생태계가 구축되어있으며, 핵심 소재의 수입 의존도가 높고 단기적인 조립 및 가공 위주의 기술개발에 편중되어있어 핵심기술이 부재함
- 이에 고부가가치의 수요 연계형 미래소재를 개발하고 시장진입을 위한 인프라 도입으로 상용화 및 확산을 지원함
- 타이타늄 항공 부품, 자동차용 알루미늄 판재 등 수송기기용 산업소재 기술개발 및 개발 장비 및 국산 공구 성능평가, 측정분석 플랫폼 등 기술개발과 가공시스템 평가를 위한 인프라 구축을 지원함

3. 지역산업 육성 정책 현황

- □ (국가균형발전 비전과 전략) 분권, 포용, 혁신을 기반으로 한 지속가능한 국가균형발전 전략으로 지역 중심의 국가적 문제해결을 지원하는 전략임
 - O 주관: 국가균형발전위원회
 - O 저성장, 양극화 등 위기 사항 극복과 4차 산업혁명, 지역산업 위기 등 시대적 흐름에 대응하게 위한 국가균형발전 전략을 수립함
 - O 사람, 공간, 산업 관점에서 지역주도 자립적 성장기반 마련을 위해 전략과제를 수립하고 변화된 시대적 요구에 대응하고자 함
- □ (국가혁신융복합단지 지정 및 육성계획) 2018년 3월 개정된 균형발전특별법에 따라 14개 시·도가 각 지역의 국가혁신 클러스터 육성계획을 수립함
 - O 주관 : 산업통상자원부
 - O 국가혁신클러스터는 시도별로 혁신도시, 산업단지 등 지역에 존재하는 핵심거점들을 연계하여 조성하는 혁신거점 육성정책임
 - 지정된 국가혁신클러스터에는 혁신프로젝트, 기업투자 유치 및 보조금 · 규제혁신 · 금융 · 재정 지원 등 다양한 지원을 추진
- □ (함께 만드는 새로운 경남 도정 4개년 계획) 김경수 도지사의 도정철학과비전 및 선거과정에서 제시된 공약을 토대로 수립된 도정 운영의 청사진
 - O 주간: 새로운 경남위원회
 - O 도정운영의 정당성과 효율성을 제고하기 위한 설계도 역할이자, 경남도 공직자들의 업무 수행을 위한 길잡이 역할을 수행
 - O '함께 만드는 완전히 새로운 경남' 비전하에 3대 목표, 12개 전략, 46개 과제를 설정함

- (1) 국가균형발전 비전과 전략
 - □ 문재인 정부는 지역 전통 주력 산업의 경쟁력 약화 및 지역경기 침체를 극복하기 위한 국가균형발전 전략을 수립함
 - O 저성장·양극화가 심화되고, 인구절벽 쇼크 및 지역산업 위기에 따른 극복 방안 도출을 위해 사람, 공간, 산업 관점의 전략 방향을 수립함

비전

지역이 강한 나라. 균형잡힌 대한민국

목표

지역주도 자립적 성장기반 마련

3대 전략 / 9대 핵심 과제

1. [사람] 안정되고 품격있는 삶

- ① 지역인재-일자리 선순환 교육체계
- ② 지역자산을 활용한 특색있는 문화관광
- ③ 기본적 삶의 질 보장을 위한 보건·복지체계 구축

2. (공간) 방방곡곡 생기도는 공간

- ① 매력있게 되살아나는 농산어촌
- ② 도시재생 뉴딜 및 중소도시 재도약
- ③ 인구감소지역을 거주강소지역으로

3. (산업) 일자리가 생겨나는 지역혁신

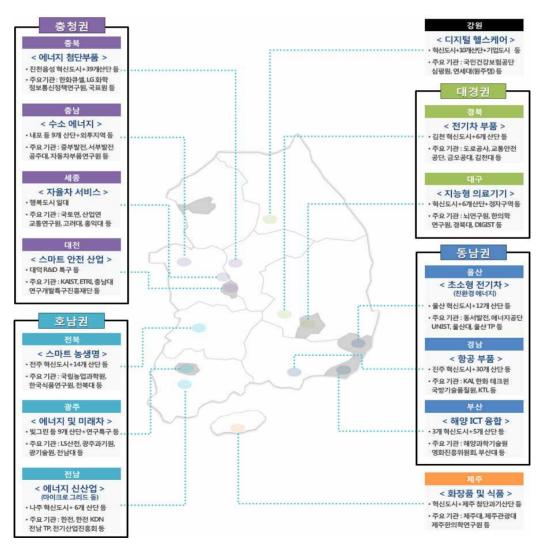
- ① 혁신도시 시즌2
- ② 지역산업 3대 혁신
- ③ 지역 유휴자산의 경제적 자산화

실행력 제고 방안 【 법령 】헌법, 국가균형발전특별법, 혁신도시특별법 개정

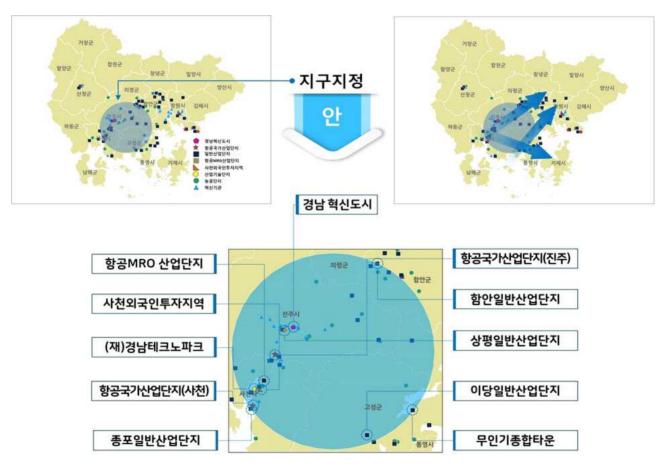
【 조직 】 균형발전 상생회의 신설, 지역혁신체계 구축

【 예산 】 ● 지역발전특별회계 개편

- 계획계약(포괄지원협약)제도 본격 추진
- ❸ 균형발전총괄지표 개발 및 지역차등지원


[그림 13] 국가균형발전 비전과 전략

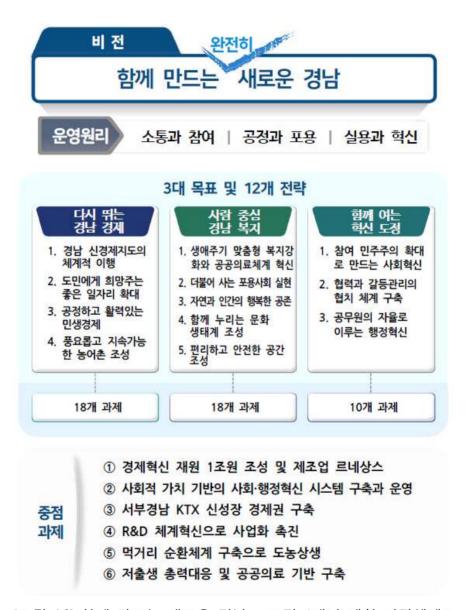
- □ 혁신도시 시즌2, 지역산업 3대혁신, 지역 유휴자산의 경제적 자산화 등의 과제를 통해 지역 산업 혁신을 이루고자함
 - 혁신도시 시즌2는 공공이관 이전에 따른 주변 지역과의 상생, 지역발전 촉진, 스마트 혁신도시 조성 등 지역혁신을 통한 일자리 확대를 지원함
 - 지역산업 3대 혁신은 지역의 산업생태계 고도화 및 혁신 성정 거점 육성, 스마트 지원프로그램 등을 통해 지역 산업 혁신을 지원함
 - O 지역 유휴자산의 경제적 자산화는 지역 국유재산 발굴 및 국유지 토지개발, 활용도 제고, 연안·도서·산촌 지역 개발 등을 통한 지역 산업 혁신을 지원함
- □ 혁신도시 시즌2를 통해 지자체-대학-이전기관 간의 협력 클러스터를 구축하고 산학연 연계를 통한 혁신 동력을 확보하고자 함
 - O 혁신도시를 중심으로 대학 캠퍼스, 기업 연구소 이전 등을 통한 산학융합지구 조성을 지원함
 - 산학융합지구는 산학협력을 통한 대학의 혁신성정 거점화 추진을 위한 방안으로 창업기업의 성장공간을 제공하고 산학협력 프로그램을 지원함
 - 시·도 주력산업을 혁신클러스터 실증프로젝트와 연계하고, 투자 선도지구· 도시첨단산단 등 투자유치 인센티브로 기업 유치를 활성화 함
 - 지자체-지역대학-이전기관 협력클러스터를 조성하고 지자체 연계 컨소시엄을 통한 지역선도대학 육성사업 등의 운영을 지원함
- □ 균형발전과 지역의 자립적 산업 생태계 구축을 위해 지자체의 주력산업 육성·지원하고 지역기업의 Glocalization을 추진함
 - O 지자체가 선정·육성하는 지역 주력산업을 기반으로 한 지역스타기업을 육성하고 중견기업 중심의 지역 혁신성장을 지원함
 - 지역 대표 중견기업을 중심으로 대학·출연(연)·중소기업 간의 공동 R&D, 수출·마케팅·인력 등 패키지 형태의 지원 등을 통해 지역 혁신 성장 동력을 확보하고자 함


- O 국가혁신클러스터, 산업단지, 세종시, 새만금 지역 등을 혁신성장 거점으로 설정하고 이를 통한 지역산업 혁신을 도모하고자 함
 - 국가혁신클러스터는 혁신도시 중심 경제자유구역 및 연구개발특구, 대학 등을 연계한 성장 거점으로 보조금·세제·금융·규제특례·혁신프로젝트 등 5대 지원 패키지를 통한 지역 산업 성장을 도모함
- O 지역기업의 Glocalization(세계화+지방화) 전략을 통해 지역기업의 해외진출 및 글로벌 수준의 혁신역량 확충을 지원함
 - 지역기업 대상 현지 맞춤형 마케팅, 수출지원, 기술ODA 등을 통한 해외 진출을 촉진하고 국내 지역과 글로벌 국가 간의 협력 사업을 통한 혁신역량 확충을 지원함

- (2) 국가혁신융복합단지 지정 및 육성계획
 - □ 지역에 존재하는 핵심거점(혁신도시, 산업단지 등)을 연계하여 혁신거점을 조성하고 육성하는 것으로, 14개 시도별 혁신클러스터 구성계획 및 혁신프로젝트를 도출함
 - O 국가혁신클러스터는 신규 거점 개발을 지양하고, 기존에 조성된 거점을 최적으로 조합하여 조성하는 방향으로 구성됨
 - O 지역별 대표산업 관련 혁신생태계조성을 위해 지역 산학연이 참여하는 대형 컨소시엄을 구성하고, 혁신클러스터의 성장을 견인한 지역 중핵기업을 선정할 계획임

[그림 14] 국가혁신클러스터 지정 및 육성방향

- □ 경상남도는 항공부품을 대표 산업으로 선정하고 진주 혁신도시 일대의 거점 및 혁신주체를 연계할 계획임
 - O 국가혁신클러스터 조성은 진주시, 사천시, 함안군, 고성군 일대의 혁신도시 및 산업단지와 공공기관, 대학, 기업 등을 연계할 계획임
 - O 대표산업인 항공부품과 관련하여 '민수항공기 부품 설계/제작 기술 개발'을 혁신프로젝트로 설정함



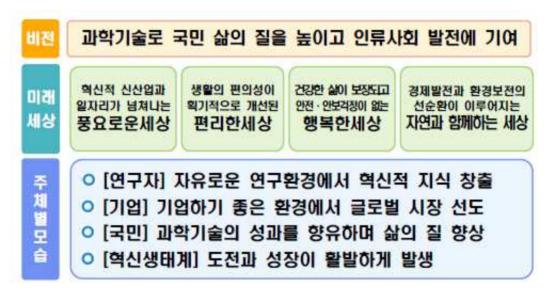
[그림 15] 경남 국가혁신클러스터 조성 계획

[표 11] 경남 국가혁신클러스터 거점 및 혁신주체 현황

구분	유형	세부내용		
거점	혁신도시	진주 혁신도시		
	산업기술단지	(재)경남TP 항공우주센터		
	산업단지	(진주, 사천) 경남항공(진주지구, 사천지구) (진주) 뿌리, 가산, 정촌, 사봉, 상평, 지수, 대곡, 사봉, 이반성, 진성 (사천) 종포, MRO, 사천제1·2, 흥사, 축동, 대동, 두량, 사남, 축동구호 (함안) 월촌, 함안, 장지, 군북, 모로 (고성) 무인기종합타운, 이당, 회화		
	외국인투자지역	사천외국인투자지역		
	이전 공공기관	한국세라믹기술원, 한국산업기술시험원, 국방기술품질원, 중소기업진흥공단, 한국남동발전(주), 한국토지주택공사, 주택관리공단, 한국시설안전공단, 한국승강기안전공단, 중앙관세분석소, 한국저작권위원회		
혁신주체	대학	경상대학교, 경남과학기술대학교, 경남대학교, 마산대학교, 부산대학교 밀양캠퍼스, 영산대학교, 인제대학교, 창원대학교, 한국국제대학교, 한국승강기대학교, 한국폴리텍대학 창원캠퍼스, 한국폴리텍대학 항공캠퍼스		
역산구제	기업	한국항공우주산업주식회사, 한화에어로스페이스, 아스트, 샘코, 율곡, 하이즈항공, 라코, 에어로에스터, DNM항공, 수성기체산업, 데크, 한국화이바, 대화항공산업, 퍼스텍 등		
	기타 기관 (연구소 등)	경남테크노파크, 중소기업진흥공단, 한국산업기술시험원, 경남지방중소벤처기업청, 한국산업단지공단 경남지역본부, 경남로봇랜드재단, 진주바이오산업진흥원, 김해산업진흥의생명융합재단, 경남창조경제혁신센터, 한국전기연구원, 재료연구소, 한국세라믹기술원, 한국생산기술연구원 진주 뿌리기술지원센터		

- (3) 함께 만드는 새로운 경남 도정 4개년 계획
 - □ 김경수 도지사의 도정철학과 비전 및 선거 과정에서 제시된 공약을 토대로 수립된 도정 운영의 청사진임
 - O 도정 운영의 정당성과 효율성을 제고하기 위한 설계도 이자, 경남도 공직자들의 업무 수행을 위한 길잡이 역할을 하고자 수립됨
 - '함께 만드는 완전히 새로운 경남' 비전하에 3대 목표, 12개 전략, 46개 과제 및 6대 중점과제를 설정함

[그림 16] 함께 만드는 새로운 경남 - 도정 4개년 계획 비전체계도



- □ [과제 2. 제조업 혁신과 신성장사업 확충] ICT 융합을 통해 경남 핵심산업의 구조고도화 및 경쟁력을 향상하고 스마트 공장/산단을 조성하는 것을 목표함
 - O (핵심산업 고도화) 항공우주, 조선해양, 나노융합, 지능형기계, 로봇, 바이오 산업의 구조고도화 및 경쟁력 향상
 - O (G-MBP 개발) 경남의 주력 산업의 생산공정 표준화 및 통합 스마트생산제조 시스템 구축
 - (스마트공장) 2022년까지 스마트공장 2,000개 구축, 대·중·소 상생형 공동구축 및 동종업종 맞춤형 구축 컨트롤타워 구성, 전문인력 양성
 - O (스마트산단 조성) 스마트 통합지원 플랫폼(G-MBP) 구축·운영, 지능형 기반시설 구축, 창원국가산업단지, 김해대동산업단지 시범사업 추진
- □ [과제 6. 서부경남 혁신클러스터 조성으로 광역경제권 구축] 진주를 선도 혁신도시로 육성하고, 항공 ICT융복합 · 희유금속 첨단 소재부품 · 항노화 산업 육성을 목표함
 - O 이전 공공기관 연계 특화산업 기업유치, 산업지원 중추도시 육성
 - 센서·비행제어·항법계통 등 ICT와 융합한 항공전자분야 핵심기술 개발
 - 경남 전남 광역경제협력을 통한 희유금속 소재부품 클러스터 조성
 - O 친환경·고내구성 세라믹 소재부품을 경남 주력산업으로 육성
 - O 지역전략 항노화산업 육성

4. 과학기술 정책 현황

- □ (제4차 과학기술 기본계획) 장기적 관점에서 과학기술로 달성하고자 하는
 미래모습을 주체별로 정의하고 이를 달성하기 위한 과학기술혁신정책을 제시한
 과학기술분야 최상위 계획임
 - O 주관부처: 관계부처 합동, 근거법령: 과학기술기본법 제7조
 - 각 부처별 과학기술 관련 정책 수립·추진방향 제시에 있어 기본이 되는 계획으로 향후 5년간('18~'22) 우리나라 과학기술혁신정책의 비전, 목표, 방향 등을 제시하는 중장기 발전전략임
 - O 국민, 연구자 등 정책 수요자들의 의견을 적극 반영하고 2040년까지 과학기술로 달성하고자 하는 미래모습을 달성하기 위한 구체적인 추진과제를 반영함
- □ (제5차 지방과학기술진흥종합계획) 지역과학기술진흥을 촉진하기 위해 17개 지방정부와 수립한 정책으로 기본 방향성을 바탕으로 지역별 과학기술진흥계획을 수립하며 종합함
 - 주관부처: 관계부처 및 지자체 합동, 근거법령: 과학기술기본법 제8조
 - O 4차 지방과학기술진흥종합계획 종료에 따른 향후 5년 동안의 지역과학기술육성을 위한 정책 필요성에 따라 수립된 계획으로 문재인 정부의 지방분권, 국가균형발전 기조를 바탕으로 함
 - O 4차 산업혁명, 저출산·고령화 등 급변하는 환경 변화에 대응 방향을 제시하고 지역과학기술역량을 강조함

- (1) 제4차 과학기술 기본계획
 - □ 해당 정책은 과학기술을 통한 국민 삶의 향상 및 인류사회 발전을 위해 혁신적인 과학기술 생태계 조성, 과학기술을 통한 신산업·일자리 창출 등을 전략으로 함
 - O 과학기술 기본계획은 과학기술로 국민 삶의 질을 높이고 인류사회 발전에 기여하는 것을 비전으로 하고 혁신 주체별 목표하는 모습을 제시함

[그림 17] 제4차 과학기술기본계획 비전 및 미래모습

- O 기존 단기성과·목표, 경제성장 중심의 과학기술정책에서 벗어나 파괴적 혁신을 일으키는 연구개발, 활발한 혁신 생태계 조성 등 미래모습 달성을 위한 전략 방향을 설정함
 - 기존 단기성과·목표 중심의 추격형 연구개발 정책에서 파괴적 혁신이 가능한 연구자 중심의 연구개발 정책으로 전환함
 - 연구개발 주체 간 융합 및 협력이 부족하고 이로 인한 혁신 한계가 발생하면서 도전과 성장이 활발히 혁신 생태계 조성이 필요해짐
 - 주력 산업을 이어갈 새로운 성장동력 확보를 통해 신산업과 일자리 창출 가속화하고자 함

- 경제 성장 중심의 연구개발에서 삶의 질 향상 및 글로벌 이슈 해결에 기여할 수 있는 연구개발로의 전환이 필요함
- □ 과학기술 생태계 조성을 위해서는 연구개발 주체간·분야별 협력, 기술혁신형 창업·벤처 활성화, 지역 주도적 지역혁신 시스템 등을 지원함
 - 수요 지향적인 산·학·연간 인력 교류를 확대하고, 주체 간 협력·융합 활성화를 통해 혁신적인 과학기술 생태계 조성을 지원함
 - O 대학 창업, 공공 연구기관 창업 등 기술혁신형 창업·벤처를 통해 과학기술 혁신 생태계 조성을 도모함
 - 창업 이후 지속적인 성장을 위한 지원, 창업 촉진을 위한 모험투자 및 민간자본 유입 촉진 등을 통한 기술기반 창업·벤처를 지원함
 - O 과학기술 생태계 조성에 있어 지역 주도적 지역혁신 시스템 구축은 과학기술지원 및 연구개발 역량의 지역 편중을 해소하고 혁신 주체간의 연계를 고도화 할 수 있음
 - 지역의 연구개발 투자결정권을 강화하고 이를 통해 지역 수요 맞춤형 연구개발 사업 지원, 자체 연구개발 자원 확대를 통한 지자체의 자율성· 책임성을 강화함
 - 지역의 우수 연구자 육성, 기업부설연구소 대학간 공동연구 확대 등 지역 연구개발 혁신 주체 역량 강화하고 국가혁신 클러스터, 특구 신기술 테스트 베드 등 지역 혁신 클러스터 고도화를 통한 지역 혁신 시스템 구축을 지원함
- □ 과학기술을 통한 신산업 육성 및 일자리 창출을 위해 혁신성장동력을 육성하고 제조업 재도약, 과학기술 기반 일자리 창출 강화 등을 지원함
 - O 4차 산업혁명 대응 기반 강화를 위해 신기술·신비즈니스의 제도적·실증적 비즈니스를 구축하고 신산업을 창출함
 - O 과학기술 분야별 맞춤형 혁신성장동력 육성 전략을 통해 신산업을 육성하고 이를 통한 국민 체감 성과 창출을 지원함

- O 제조업 경쟁력 강화를 위한 기존 주력 산업의 전환 및 신사업 확대를 지원하고 이를 통한 경쟁력 강화를 도모함
 - 제조기업의 스마트화를 촉진하고 소재·부품·장비 분야의 핵심기술 확보를 통한 경쟁력 확보를 지원함
- O 중소기업 연구개발 효과성 확보를 위한 전략적 중소기업 지원 및 과학기술 기반 일자리 창출을 지원함
- □ 과학기술기본계획은 계획을 효과적으로 이행하기 위해 중점과학기술을 선정했으며, 이는 경제·사회·과학기술적으로 기여도 또한 높은 기술임
 - 중점과학기술은 3차 과학기술기본계획 및 최신 기술 트랜드, 전문가 평가결과 등을 반영하여 도출한 것으로 기본계획의 추진과제와 연계하여 제4차 과학기술 기본계획의 효율적인 이행을 도모함
 - O 11개 대분류, 총 120개 기술로 구성되어있으며, 소재·나노 분야 중점기술은 다음과 같음
 - 기능성 유기소재 기술
 - 친환경 바이오소재 기술
 - 고성능 금속소재 기술
 - 나노구조제어 세라믹·탄소 소재 기술
 - 다기능 융·복합소재 기술

- (2) 제5차 지방과학기술진흥종합계획
 - □ 문재인 정부의 지방 분권 및 국가균형발전 기조에 맞춰 과학기술을 통한 지역 주도의 혁신 성장을 도모하고자 함
 - O 과학기술을 통한 지역주도 혁신성장 실현을 비전으로 지방분권 기조에 맞춰 지역 리더쉽 구축, 혁신주체 성장, 혁신체계 고도화로 이어지는 선순환 체계를 구축하고자 함

비전 과학기술을 통한 지역주도 혁신성장 실현

1. 지방정부의 지역혁신 리더십 구축

2. 지역 혁신주체의 역량 극대화

3. 지역혁신 성장체계 고도화

1 지역의 R&D 투자 결정권 강화 지역 2 지방정부의 R&D 기획·평가역량 확충 주도 ③ 지역에 대한 중앙정부의 지원체계 개선 ④ 지역거점대학의 연구 및 교육 경쟁력 제고 9대 혁신 중점 5 지역 공공기관 및 시민사회의 지역 혁신 역할 강화 주체 과제 6 지역 기업의 기술 역량 확보 7 지역 산학연 공동연구 활성화 지역 图 지역 내 기술사업화 촉진 시스템 강화 성장 9 지역 혁신클러스터 고도화

[그림 18] 제5차 지방과학기술진흥종합계획 비전 및 전략

- □ 지역의 연구개발 투자 결정권 강화 및 연구개발 기획 역량 확충, 중앙정부 지원 체계 개선 등을 바탕으로 지역 주도형 연구개발 기반을 구축하고자 함
 - O 지역 주도 수요맞춤형 연구개발 사업을 추진하고, 자체 연구개발 재원 확대 등을 통한 지역의 연구개발 투자 결정권을 강화함
 - O 지역의 연구개발 기획체계 개선하고 연구조합 등 민간 연구개발 중간조직 강화를 통한 지역의 연구개발 기획역량을 확충함
- □ 지역거점대학의 연구 및 교육 경쟁력 제고, 지역 기업의 기술 역량 확보 등을 통한 과학기술 자원의 지역 편중 문제를 해결하고 자생적인 성장동력 확보를 위한 지원을 확대함
 - O 지역거점대학 연구역량 제고를 위한 지원을 확대하고 신산업분야 신진 연구자 육성을 통해 지역 혁신주체 역량 강화를 도모함
 - 기초연구사업, 과학기술특성화 대학 등 지역 내 기술혁신 역량 강화뿐만 아니라 지역 산업 수요 맞춤형 교육 활성화를 통해 지역혁신 역량을 제고함
 - O 출연(연)과 지역의 연계성을 강화하고 지역 연구개발 전문기관의 역할 조정 등을 통해 지역 공공기관 및 시민사회의 지역 혁신 역할을 강화함
 - 출연(연) 지역분원 등을 활용한 혁신플랫폼 육성 및 지역 출신 인력 우선선발 등 지역과 출연(연)의 연계성 강화를 통한 혁신 역량 향상을 지원함
 - 연구개발지원단(연구개발 기획 및 지원) 및 경제혁신센터·창업보육센터 (창업초기 BI), 테크노파크(POST BI, 혁신형 중소기업 육성) 등의 역할분담을 명확히 함으로서 지역 전문기관의 혁신 주체로의 역할을 강화함
 - O 지역 중소기업의 기술 혁신 및 기술혁신형 지역 중소기업 창출을 통한 지역 기업의 기술 역량 확보를 지원함
 - 지역 중소기업 수요 중심의 연구개발을 지원하고 지역 보유 기술을 활용한 연구소 기업 창업 등을 지원함
- □ 또한 지역 성장 기반 마련을 위해 지역의 산학연 공동연구를 활성화 하고 지역

내 기술사업화 및 혁신 클러스터 고도화를 지원함

- 지역 수요 기반 산학연 공동연구를 강화하고 기반 및 제도적 지원을 확대함으로서 지역 산학연 공동연구 활성화를 지원함
- O 기술사업화 사업을 확대하고 관련 지역조직을 활성화함으로서 지역 내 기술사업화가 촉진되도록 함
- O 지역 특성을 반영한 소형 혁신클러스터 추진 및 기존 혁신자원을 활용해 혁신클러스터를 강화하는 등 지역 성장을 위한 혁신클러스터 강화를 지원함
 - 지역 내 중소 제조기업들의 제품 개발 및 개선을 지원하는 메이커 스페이스 지원센터, 신기술 테스트베드 시스템, 혁신 공간 조성 등 지역 기업의 혁신을 위한 인프라 고도화를 지원함

5. 소재·부품 육성정책 현황

(중국-중국제조2025)	중국 제조	돈업의 저가	공산품	중심의	한계를	극복하기	위해
중장기적으로 제조약	법 기술 선	진국 도약을	을 위해 4	수립한 기	정책임		

- O 주관기관: 국무원
- O 중국의 제조업 고도화를 위해 수립된 3단계 혁신 전략의 1단계 정책으로, 공업정보화부, 국가발전계획위원회, 과학기술부, 재정부, 국가질량감독검험검역총국, 공정원 등 관련 정부부서가 연합 하여 목표를 설정하고 정책을 발표함
- □ (EU-Horizon2020) EU의 저성장과 실업률 증가문제 해결, 사회적 문제 해결, 과학기술 경쟁력 강화 등을 목적으로 수립한 정책임
 - O 주관기관: EU Commission
 - O 유럽의 신성장동력 정책의 전략 중 혁신연합(Innovation Union)의 과학기술 혁신 R&D 프로그램의 통합·수정 정책으로 EU를 세계 최고의 과학기술 연구 기반 지역으로 확립하는 계획을 주요 목표로 함
- □ (독일-Vom Material zur Innovation) 독일의 재료분야 혁신 및 경쟁력 강화를 위한 정책으로 연구개발, 인력양성 등을 지원함
 - O 주관기관: 독일 연방교육연구부(BMBF)
 - O 기후변화, 자원고갈 등 사회적 문제 해결과 독일의 산업경쟁력 강화의 기반인 재료과학 분야에 대한 장기적인 지원을 위한 정책으로 2025년까지 연간 1억 유로 수준의 예산을 투입하는 정책임

- □ (한국-제4차 소재부품발전기본계획) 4차 산업혁명에 대응하고 주력 산업 고도화에 기여할 수 있는 소재·부품 산업 지원 정책임
 - O 주관기관: 산업통상자원부
 - O 4차 산업혁명 및 주력산업 고도화에 기여할 수 있는 소재·부품 개발을 위한 정책으로 100대 세계최고기술 확보를 목표로 기술개발 및 인프라구축, 생산체계구축 등을 지원하는 정책임

(1) 중국

- □ 중국제조 2025는 중국 제조업의 한계를 극복하기 위한 중장기 전략으로 제조업 기술 선진국 도약을 위한 정책임5)
 - O 중국은 저가 공산품 제조 중심의 제조업 고도화를 위해 3단계(30년)에 걸친 제조업 혁신 정책을 수립함
 - 1단계(2015~2025): 제조 대국에서 제조 강국으로 진입하기 위해 제조 선진국과의 기술 격차를 좁히고, 일부 분야에서는 세계 최고 수준 달성을 목표로 함
 - 2단계(2025~2035): 전체 제조업을 세계 제조 강국과 동등 이상의 수준으로 향상 시키는 전략으로 기술 선진국으로 도약하는 것을 목표로 함
 - 3단계(2035~2045): 세계 최강 제조업 대국으로 지위를 굳건히 하여 세계 최고 수준의 제조업 국가로 발전하는 전략임
 - O 1단계 목표달성을 위해 중국제조 2025를 발표하였으며, 9대 전략적 임무, 10대 전략 중점 분야를 설정하고 해당 분야의 지원에 대한 계획을 담고 있음

[표 12] 중국제조 2025 9대 전략적 임무

번호	전략적 임무	
1	국가제조업 혁신능력 제고	
2	정보화와 공업화 심층융합 추진	
3	공업기반 능력 강화	
4	품질 브렌드 육성 강화	
5	녹색제조 전면 보급	
6	중점분야 획기적 성과창출 본격화	
7	제조업 구조조정 심층 추진	
8	서비스형 제조와 생산성 서비스업 적극 발전	
9	제조업의 국제화 발전수준 향상	

⁵⁾ 중국의 신소재 발전 계획, 이용태, 과학기술정책, 2017. 08.

[표 13] 중국제조 2025 10대 전략적 중점분야

10대 중점분야	주요 개발분야
1. 차세대 IT 산업	1. 직접회로 및 전용장비 2. 정보통신 장비 3. 운행시스템 및 공업소프트웨어
2. 고급 수치해석제어선반, 로봇	1. 수치제어선반, 기초제조장비, 통합제조시스템 2. 적층제조 (3D 프린팅) 3. 공업로봇, 특수로봇, 서비스로봇
3. 항공우주 장비	 대형항공기, Wide Body 여객기 중형헬기, 터보프롭, 터보펜 엔진 차세대 로켓, 중형 탑재체 유인우주선 공정, 달탐사 공정
4. 해양공정장비 및 첨단기술 선박	1. 심해 정거장, 호화 크루즈선박 2. 액화천연가스선
5. 궤도교통 첨단장비	1. 차세대 지능형 궤도교통장비 2. 세계 선두 현대적 궤도교통 산업체계
6. 에너지절약, 대체에너지 자동차	1. 전기 자동차, 연료전지 자동차 2. 전지, 모터, 고효율 내연기관
7. 전력장비	1. 수력발전기, 원자로, 중형 가스터빈 2. 스마트 그리드, 신재생에너지 장비
8. 농업용 기계장비	1. 첨단 농업용 기계장비 2. 트랙터, 복식 작업공구, 대형 콤바인
9. 신소재	1. 특수금속 기능소재, 고성능 구조재료 2. 기능성 고분자소재, 특수 무기비금속소재 3. 선진 복합소재, 초전도 나노소재, 그래핀
10.바이오의약, 고성능 의료기기	1. 혁신 중의약 및 맞춤형 치료약물 2. 의료용 로봇, 영상장비 3. 웨어러블, 원격진료 등 모바일 의료제품 4. 바이오 3D 프린팅, 유도다기능 줄기세포

- □ 중국제조 2025에서 신소재 분야는 선진 기초재료, 핵심 전략재료, 선행 신재료로 구분하여 세부적으로 전략적 연구개발 계획을 수립하였으며 세라믹 관련 연구도 증가할 것으로 예상함
 - O 선진 기초재료는 우수한 성능을 가지며 활용 범위가 넓고 한 가지 재료가 다양한 용도가 있는 신소재로 극한 환경용 시멘트, 친환경 비금속 광물 기능소재 등을 포함하고 있음
 - O 핵심전략소재는 고성능 신재료로 전략 산업의 혁신 구동 발전전략을 실현할 수 있는 소재를 뜻하며, 세라믹 섬유, 전자 세라믹, 바이오 세라믹 등이 이에 포함됨
 - O 선행 신재료는 혁신적인 새로운 소재로 소재의 발명 및 응용이 어렵지만 성공하면 세계 시장 장악력을 가질 수 있는 소재로써 3D 프린팅용 소재, 초전도 소재, 그래핀 소재 등을 포함함
- □ 중국제조 2025에 따르면 신소재 분야를 계획적으로 발전 시키기 위해 프로젝트 자금 설립, 산학연 혁신연맹 중점지원 등을 수행할 계획임
 - 신소재 분야 혁신을 위해 구체적인 수행 방법은 다음과 같음
 - 프로젝트 자금설립
 - 산학연 혁신연맹 중점지원 및 핵심 인력 교육
 - 신소재 R&D와 선진제조기술의 결합강화
 - 기초소재업계 전환 및 up-grade
 - 공통핵심기술과 중대 응용기술개발 및 극복
 - 산업화가 가능한 중대과제에 대한 재정보조지원
 - 기초공동 및 핵심기술 표준화 및 세계 표준화에 적극참여
 - 신소재 기술 성숙도 평가 및 인증 시스템구축
 - 국가 기초신소재 데이터베이스 구축 등

(2) EU

- □ Horizon 2020은 EU의 저 성장 경제와 실업률 증가 등을 해결하기 위해 수립된 'Europe 2020 Stategy'의 과학기술 혁신 전략임6
 - O Horizon 2020은 EU GDP의 약 3%를 과학기술 혁신 연구개발에 투자하여 EU를 세계최고의 과학기술 연구 기반 지역으로 확립한다는 계획을 주요 목표로 함
 - O Horizon 2020에서는 3대 우선과제와 13대 전략을 정의하며 세부 내용은 다음과 같음
 - '우수과학'은 유럽을 세계 최고 수준의 과학기술 연구 거점 지역으로 발전시키기 위한 과학자 양성, 연구 인프라 확충 등에 대한 투자를 목표로 함
 - '산업적 리더쉽'은 첨단 과학기술과 녹색 성장 산업의 발전을 위한 연구 및 기술 개발을 촉진하여 산업 경쟁력을 강화하고 유럽으로의 연구개발 투자유치를 목적으로 함
 - '사회적 과제'는 유럽사회가 직면하고 있는 노령화, 자원고갈, 기후변화 등의 문제를 보다 근본적으로 해결하는 연구에 집중 투자하여 유럽을 포괄적이고 혁신적이며 안정적인 사회로 완성하는 것을 목표로 함

[표 14] Horizon 2020 3대 우선과제 및 13대 전략

3대 우선과제	13대 전략
	유럽 연구 이사회
O 스 기 하	미래 기술 및 유망 기술 육성
우수과학 	마리퀴리 사업
	연구 인프라 구축
	기반기술 및 산업 기술분야 리더쉽 강화
산업적 리더쉽	리스크 파이낸싱에 대한 접근
	중소기업 혁신
	보건 및 인구통계학적 변화와 웰빙
	식량자원 확보 및 농수산, 생명과학 연구
나항저 기계	녹색 에너지
사회적 과제	스마트, 녹색, 통합 수송
	기후변화 대응 및 원자재 확보
	포용적, 혁신적, 안전사회 구축

⁶⁾ EU Horizon 2020 정책 분석, NIPA, 2013.01.

- □ 13대 전략 중 '기반기술 및 산업기술 분야 리더쉽 강화'는 광범위한 분야에 걸쳐 산업·기술적 혁신을 창출하기 위한 연구개발을 지원하는 프로그램임
 - O 기반기술 및 산업기술 분야 리더쉽 강화 전략에서 지원하는 분야는 정보통신기술, 나노기술, 첨단소재, 바이오기술, 첨단제조 및 공정, 우주 분야로 각각의 기술의 특성 및 산업적 상황에 맞는 연구개발을 지원함
 - O '기반기술 및 산업기술 분야 리더쉽 강화' 전략의 2018-2020 실행 계획은 금속, 세라믹 등을 활용한 다기능 복합소재 개발 등에 대한 내용을 담고 있으며 소재 관련 연구개발 주제는 다음과 같음
 - 3D 프린팅용 기능성 소재 개발
 - 차세대 바이오 소재
 - 자동차용 배터리 고효율화 소재
 - 신재생 에너지 고효율화 소재
 - 에너지 수확용 스마트 소재

(3) 독일

- □ Vom Material zur Innovation은 재료의 연구개발 및 제품·공정 혁신의 전 과정을 지원하기 위한 정책임
 - O Vom Material zur Innovation은 기후변화, 자원고갈 등 사회적 문제 해결과 독일의 산업 경쟁력 강화를 위해 재료과학분야를 지원하는 정책으로 독일연방교육연구부 (BMBF)가 주관하며, 연간 1억 유로 규모로 2015년~2025년 동안 지원함
 - O 해당 정책의 목표는 다음과 같음
 - 재료기반의 제품과 공정혁신으로 산업 경쟁력 강화 및 경제 활성화
 - 기후변화 및 자원고갈 대응과 같은 삶의 질 향상을 위한 사회적 문제 해결
 - 산업계 연구개발 투자를 확대할 수 있는 인센티브 창출
 - 재료분야 산업 제도의 통합적 구축 및 전문 인력 양성, 국제협력 강화
- □ Vom Material zur Innovation은 재료분야의 경제적 잠재성과 사회적 역할을 강조하고 있으며, 특히 탄소섬유, 고성능 세라믹 등 기능성 소재의 시장성에 대해 강조하고 있음
 - 재료분야는 경제적·사회적으로 유망한 분야이나 개발 및 제조업 혁신연계에 오랜 시간이 걸리는 것을 고려해 장기적 관점의 사회적 도전 과제에 초점을 두고 있음
 - 탄소 섬유 시장은 연평균 17% 수준으로 성장하여 2020년 약 200억 유로, 고성능 세라믹 분야는 2018년 약 680억 유로 규모의 시장으로 전망하고 있음
 - 현재 주요 재료 및 장기적 사회 문제를 고려해 도출한 연구 분야는 다음과 같음
 - 전력 분야 활용 소재
 - 원자재 및 소재의 지속적인 활용을 위한 연구
 - 전자 기기 및 운송 기기 분야 활용 소재
 - 건강 및 삶의 향상을 위한 소재
 - 미래 건설 시스템에 활용될 소재

(4) 한국

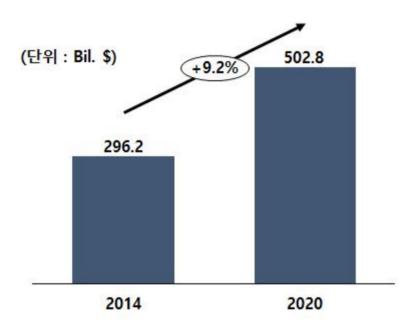
- □ 제4차 소재부품발전기본계획은 소재·부품 분야가 4차 산업혁명 관련 신산업 육성 및 주력산업 고도화를 뒷받침할 수 있도록 기술개발, 인프라구축, 생산체계구축 등을 지원하는 정책임
 - O 2025년까지 100대 세계최고기술 확보를 통한 4대 소재·부품 수출 강국으로의 도약을 목표로 다음과 같은 전략을 수립함
 - 첨단 신소재·부품 기술개발 및 상용화를 지원하고 2025년 까지 100대 신소재·부품 기술을 개발함
 - 4차 산업혁명 대응을 위해 융복합 소재·부품 인프라를 구축하고 미래형 인프라 구축 및 인력 양성을 통한 소재·부품 분야 발전에 기여함
 - 소재·부품 중소기업의 공정 효율화를 지원하고 친환경공법 개발을 지원함
 - 수요기업과의 협력을 통한 track record 확보 등을 통한 소재·부품기업의 글로벌 진출 역량 강화를 지원함
- □ 100대 세계최고기술 확보를 위해 소재 및 부품 각각 50개의 주요 기술을 선정하고 해당 기술에 대한 지원을 확대함
 - 소재는 금속(13개), 화학(12개), 고무·플라스틱(7개), 섬유(6개), 세라믹(12개) 분야 기술이며 부품은 전자(10개), 수송(14개), 기계(6개), 전기(6개), 조립금속(6개), 정밀기기(6개) 분야 기술임
 - O 해당 기술을 4차 산업혁명 기반기술 및 연관 신산업 관련 소재·부품 기술과 주력산업 고도화에 필요한 소재·부품 기술로 구분하여 기술 특성에 맞는 지원함
 - 4차 산업혁명 기반기술은 자율주행차, 웨어러블 디바이스 등 스마트화, 친환경화, 소비자 맞춤화 트렌드를 뒷받침하는 소재·부품 및 기술을 포함함
 - 주력산업 고도화 기술은 고기능성 섬유, 이차전지, 각종 센서 등 요소 부품으로 활용 될 수 있는 소재·부품 기술과 자동차, 선박, 반도체, 디스플레이 등 수출 주력 제조업 관련 제품 차별화용 소재·부품 기술을 포함함

[표 15] 제4자 소재부품발전기본계획 지원분야

구분	산업	소재·부품
4+1	IoT (21개)	(자율주행차用) 인텔리젼트 전조등 부품 (디스플레이用) 투명전극 필름 소재 (웨어러블기기用) 고전도성 소재 합성 및 전극인쇄 기술, 에너지 변환 기능 복합세라믹 소재 (초고속통신用) 5G 이동통신 모뎀 (전자센서用) 마이크로 광원부품 등
4차 산업혁명 기반기술 및 연관 신산업	빅데이터 (3개)	(클라우딩컴퓨터用) 고방열/차폐 고분자 하이브리드 소재, 고분자소재고내열화 기술, 고에너지효율 전력관리·제어 모듈
관련 소재·부품	AI (3개)	(항공기用) 유/무인기 구조물 건전성 진단 모듈, 고성능 항법장치 (드론用) 무인기 충돌회피 시스템
기술	로봇 (18개)	(협업로봇用) 초고강도 고성형 알루미늄 (스마트팩토리用): ICT융합 CNC (안전로봇用) 엔지니어링 플라스틱 수지, 고효율 모터부품 (제조로봇用) 고응답특성 모터부품, 에너지 발전·변환 세라믹 소재 등
	3D 프린팅 (5개)	(항공기·방산부품用) 타이타늄 미세구조 제어기술, 손실제로제품화기술 (치과·정형用) 기능성 임플란트 바이오세라믹 소재 등
	전자부품 (6개)	(전자부품用) 적외선 등 센서부품, 고출력 레이져·센서 기술 (친환경건축用) 고기능 플라스틱 소재 등
	전지 (4개)	(에너지用) 리튬이온전지 고에너지밀도화 기술, 고안전성 이차전지소재, 원자로 초내열합금 소재 및 로터 제작 기술
	특수섬유 (4개)	(기계부품用) 아라미드 섬유제조기술 (전자부품用) 복합부직포 제조기술 (소비재공통소재用) 신합섬 소재기술, 아라미드 하이브리드 복합제 기술
주력산업 - 주력산업	자동차 (11개)	(그린카用) 저비용 Mg 판재 제조기술 (자동차샤시用) 고기능 철강 소재 (전기차用) 배터리 관리 모듈, 고출력구동모터 등
고도화에 필요한	선박 (3개)	가스연료 추진 엔진부품, 신개념 조타프로펠러부품, 친환경 평형수 처리 기술
소재·부품 기술	철도차량 (3개)	동력용 배터리팩 모듈, 고효율 에너지관리모듈, 조명 모듈화 기술
	항공 (5개)	(항공기내장재用) 난연 마그네슘 합금제조기술 (항공기부품用) 열가소성 탄성체 제조기술, 차세대 고형고무제조기술 등
	반도체 (3개)	대용량 메모리 기술, 초고속 메모리 기술, 파워반도체 기술
	디스플레이 (5개)	(OLED用) 초고집적 화소기술, OLED 엔진기술 (그린LED用) 웨이퍼기술 (LED用) 마이크로 광원 부품, 컬러필터기술
	바이오 (6개)	(의약用) 바이오의약품 기반기술, 기초의약물질 및 생물학적 제제화기술 (화장품用) 기능성 뷰티케어 세라믹 소재 등

6. 소결

- □ 세라믹은 우리나라 미래 주요 이슈 중 다수 이슈에 해결할 수 있어, 국가사회 문제 해결 관점에서 중요한 가치를 지님
 - O 과학기술예측조사에서는 향후 우리사회에 큰 영향을 미칠 것으로 예상되는 40대 주요 이슈를 도출함
 - O 도출된 40대 이슈 중 27개 이슈의 해결에 세라믹 기술이 직접적으로 기여할 수 있는 것으로 파악됨
- □ 세라믹 소재 부품은 정부의 신산업 육성 목표 실현에 있어 중요한 역할을 담당함
 - O 과학기술정보통신부의 13대 혁신성장동력 산업 중 10개 혁신성장동력 산업에 세라믹 소재·부품이 기여할 수 있는 것으로 확인됨
 - O 산업통상자원부의 5대 신산업의 경우 전체에 세라믹 소재·부품이 기여할 수 있음
- □ 정부의 지역 발전(국가균형발전) 정책에서는 지역 주도적 자립 성장과 혁신 클러스터를 활용한 산업 육성이 강조되고 있으며, 경상남도 또한 혁신클러스터를 활용한 세라믹 산업 육성을 도모하고 있음
 - O 진주 혁신도시를 중심으로 한 경남 국가혁신클러스터는 항공부품 산업을 주요 산업으로 설정하고, 한국세라믹기술원 등의 혁신기관을 활용한 산업 육성을 도모하고 있음
 - 경상남도는 서부 경남의 국가혁신클러스터를 활용해, 친환경·고내구성 세라믹 소재부품을 경남 주력산업으로 육성하는 정책 목표를 수립함
- □ 정부의 최상위 과학기술 정책인 과학기술기본계획에서도 세라믹 중요성이 확인되었으며, 지역 과학기술 육성에 있어서는 지방정부의 주도적 역할 수행이 강조되고 있음
 - O 제4차 과학기술 기본계획의 120대 중점기술의 일환으로 나노구조제어 세라믹· 탄소소재 기술이 제시됨
 - O 제5차 지방과학기술진흥종합계획에서는 지방정부의 연구개발 지원 주도권을 강화하고, 지역 대학·공공연구기관·혁신기관(지역TP 등)의 역할 확대를 강조함

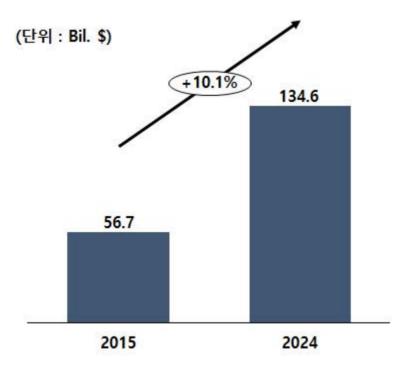

- □ 주요국 소재·부품 관련 정책에서는 세라믹 관련성이 높은 소재·부품 기술 개발의 중요성이 강조되고 있으며, 국내 소재·부품 정책에서도 세라믹의 중요성이 직접적으로 확인됨
 - 중국의 중국제조 2025에서는 핵심전략소재의 일환으로 세라믹섬유, 전자세라믹, 바이오세라믹 등을 설정함
 - O EU, 독일의 정책에서 제시하고 있는 주요 소재 연구주제 또한 에너지, 바이오, 3D 프린팅 등 세라믹 관련성이 높은 분야임
 - O 한국의 제4차 소재부품발전 기본계획에서는 50대 소재 분야 주요기술을 선정하였으며, 이 중 12개 기술이 세라믹 기술에 해당함

Ⅲ. 세라믹 산업 · 경제 현황

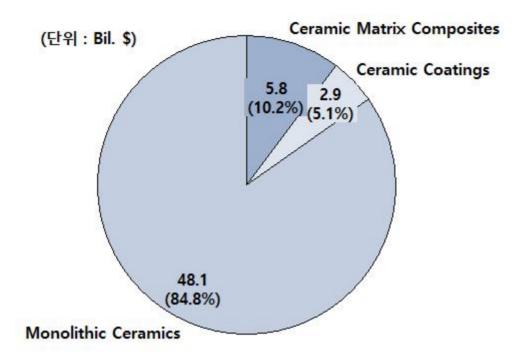
1. 세라믹 산업 규모

가. 전세계 세라믹 산업 규모

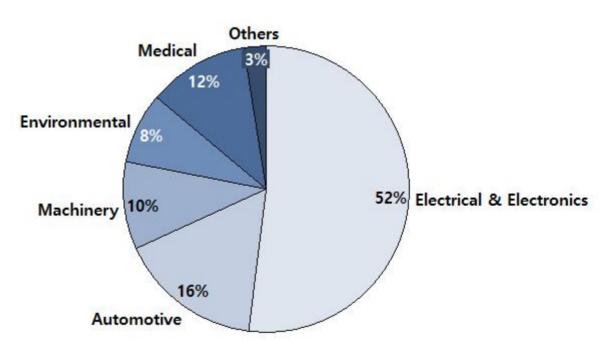
- □ 전세계 세라믹 산업 규모는 2014년 2,962억 달러 규모로 추산되며, 2020년까지 연평균 9.2% 수준으로 성장할 것으로 예측됨7)
 - O 2014년 전세계 세라믹 산업 규모는 2,962억 달러 규모이며, 2020년 전세계 세라믹 산업 규모는 5,028억 달러 규모가 될 것으로 예상됨


[그림 19] 전세계 세라믹 산업 규모

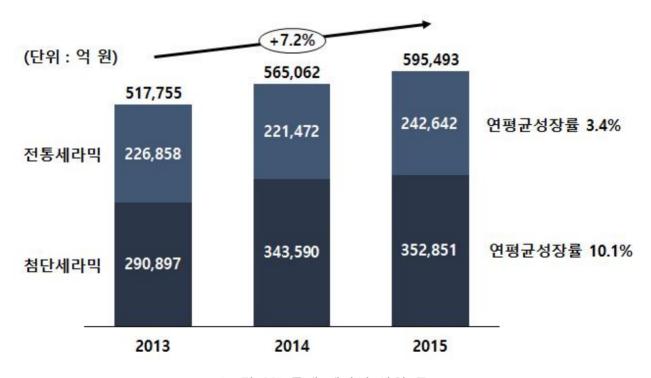
- □ 전세계 첨단세라믹(Advanced Ceramics) 산업 규모는 2015년 567억 달러 규모로 추산되며, 2024년까지 연평균 10.1% 수준으로 성장할 것으로 예측됨8)
 - O 2015년 전세계 첨단세라믹 산업 규모는 567억 달러 규모이며, 2024년 전세계 첨단세라믹 산업 규모는 1,346억 달러 규모가 될 것으로 예상됨
 - O 2015년 기준 전세계 첨단세라믹 산업 세부분야별 비중은 모노리식 세라믹이 85% 수준으로 가장 높게 나타남


^{7) &#}x27;Ceramics: Market Shares, Strategies, and Forecasts, Worldwide, 2014 to 2020' (Wintergreen Research, 2014)

^{8) &#}x27;Advanced Ceramics Market Size, Share & Trend Analysis Report By Material, By Product, By Application, And Segment Forecasts, 2018 - 2024'(Grand View Research, 2018)


- 모노리식 세라믹(Monolithic Ceramics) 분야 규모는 481억 달러로 전체 첨단세라믹 시장의 84.8%를 차지함
- 세라믹 복합재료(Ceramic Matrix Composites) 분야 규모는 58억 달러로 전체 첨단세라믹 시장의 10.2%를 차지함
- 세라믹 코팅(Ceramic Coatings) 분야 규모는 29억 달러로 전체 첨단세라믹 시장의 5.1%를 차지함
- O 2015년 기준 전세계 첨단세라믹 활용분야별 비중은 전기·전자(Electrical & Electronics) 분야가 가장 큰 것으로 나타남
 - 전기·전자 외에 자동차(Automotive), 의료(Medical), 기계(Machinery), 환경(Environmental) 분야가 첨단세라믹 주요 활용 분야로 나타남

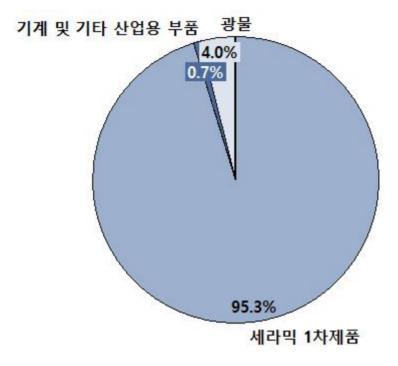
[그림 20] 전세계 첨단세라믹 산업 규모


[그림 21] 전세계 첨단세라믹 산업 세부 분야별 규모 및 비중(2015년)

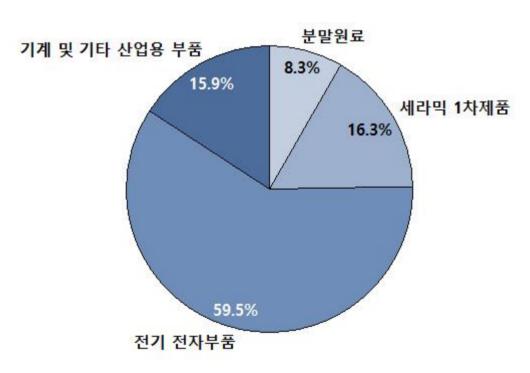
[그림 22] 전세계 첨단세라믹 활용 분야별 비중(2015년)

나, 국내 세라믹 산업 규모

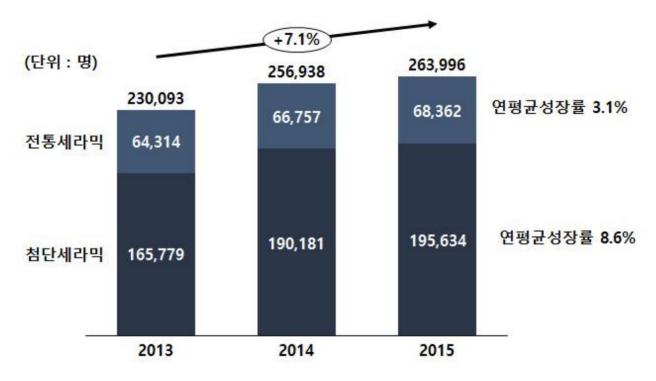
- □ 국내 세라믹 산업 규모는 2015년 기준 59조 5천억 원 규모이며 2013년 이후 연평균 7.2% 수준으로 성장함》
 - 전통세라믹 산업 규모는 2015년 기준 24조 2,642억 원 규모이며, 2013년 이후 연평균 3.4% 수준으로 성장함
 - 전통세라믹 세부 분야별 비중은 세라믹 1차 제품이 95.3%로 대부분을 차지함
 - O 첨단세라믹 산업 규모는 2015년 기준 35조 2,851억 원 규모이며, 2013년 이후 연평균 10.1% 수준으로 성장해 전통세라믹 대비 높은 성장률을 보임
 - 첨단세라믹 세부 분야별 비중은 전기 전자부품이 약 60%로 가장 높으며, 세라믹 1차 제품(16.3%), 기계 및 기타 산업용 부품(15.9%) 순으로 확인됨



[그림 23] 국내 세라믹 산업 규모


^{9) 2015} 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2016), 2016 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2017)

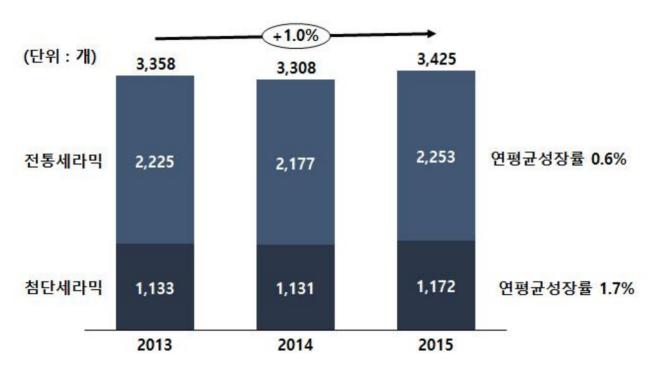
- 68 -



[그림 24] 국내 전통세라믹 세부 분야별 비중(2015년 기준)

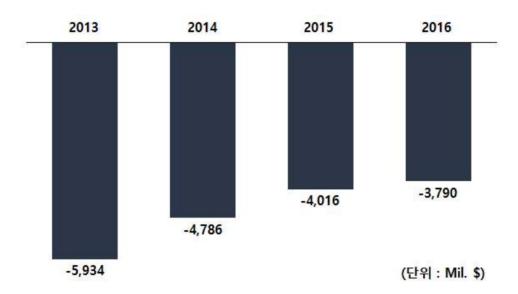
[그림 25] 국내 첨단세라믹 세부 분야별 비중(2015년 기준)

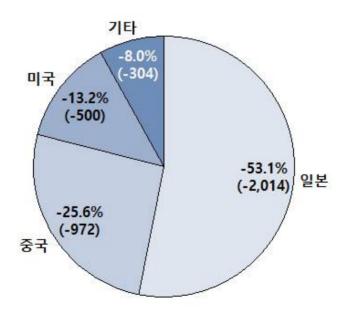
- □ 국내 세라믹 산업 고용인원 수는 2015년 기준 약 26만 4천명이며, 2013년 이후 연평균 7.1% 수준으로 성장함10)
 - O 전통세라믹 산업 고용인원 수는 2015년 기준 약 6만 8천명이며, 2013년 이후 연평균 3.1% 수준으로 성장함
 - O 첨단세라믹 산업 규모는 2015년 기준 약 19만 6천명이며, 2013년 이후 연평균 8.6% 수준으로 성장해 전통세라믹 대비 높은 성장률을 보임


[그림 26] 국내 세라믹 산업 고용인원 수

^{10) 2015} 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2016), 2016 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2017)

- 70 -


- □ 국내 세라믹 사업체 수는 2015년 기준 3,425개이며, 2013년 이후 정체 양상을 보임11)
 - 전통세라믹 사업체 수는 2015년 기준 2,253개이며, 전체 세라믹 기업의 65.8%를 차지함
 - O 첨단세라믹 사업체 수는 2015년 기준 1,172개이며, 전통세라믹과 비교할 때 기업 수의 연평균성장률이 상대적으로 높게 나타남
 - O 전통세라믹 및 첨단세라믹 모두 사업체 수의 증가율은 산업규모 및 고용인원 증가율 대비 낮은 수준을 보임

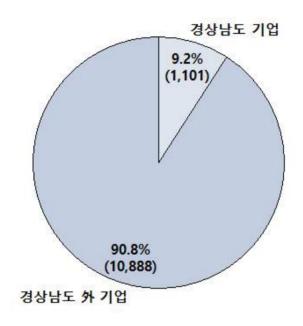

[그림 27] 국내 세라믹 산업 사업체 수

^{11) 2015} 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2016), 2016 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2017)

- □ 국내 세라믹산업 무역수지는 2016년 기준 37억 달러 적자로 무역수지 적자가 지속되고 있는 상황임12)
 - O 세라믹산업 무역수지는 2013년 59억 달러 적자에서, 2016년 37억 달러 적자로 적자 상황이 지속되고 있으나 규모는 감소하고 있음
 - O 2016년 기준 대 일본 무역수지 적자가 전체의 53.1%를 차지해 가장 높았으며, 일본 · 중국 · 미국 3국과의 교역에서 발생한 적자가 전체의 92%를 차지함

[그림 28] 국내 세라믹산업 무역수지

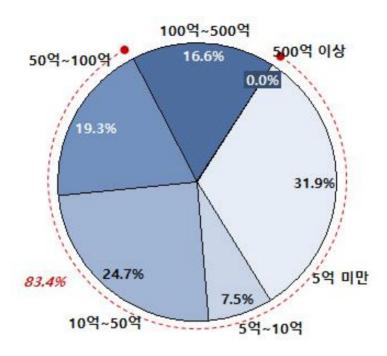
[그림 29] 국내 세라믹산업 국가별 무역수지 비중(2016년 기준)


^{12) 2015} 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2016), 2016 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2017)

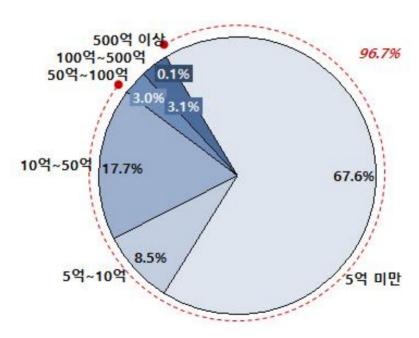
2. 경상남도 세라믹 산업 현황

가. 세라믹 산업 현황

- □ 경상남도 세라믹 기업은 2015년 기준 약 1,101개로 전국 대비 9.2% 수준임13)
 - 경상남도 소재 세라믹 기업 중 세라믹 원자재·기초소재 생산 업체는 총 332개 이며, 세라믹 가공·성형 제품 생산 업체는 총 769개임



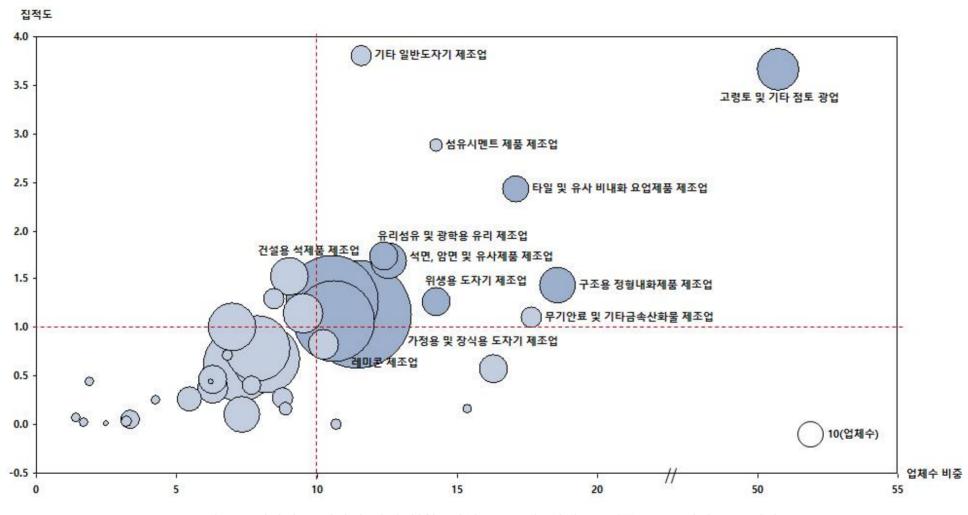
[그림 30] 경상남도 세라믹 기업 수 비중


- □ 경상남도에 소재한 세라믹 기업 중 2015년 기준으로 92.7%가 연매출 100억원 이하의 소기업으로 구성되어 있음¹⁴)
 - O 전국대비 업체 수 비중은 9.2%인 반면 매출액 비중은 6.3%, 고용 비중은 8.1%로 매출액 및 고용 측면에서 소규모의 기업으로 구성됨
 - 전국 세라믹 기업 매출액 총합은 48조 6,500억 원 규모이며, 경상남도 세라믹 기업 매출액 총합은 3조 833억 원 규모임
 - 전국 세라믹 기업 고용인원 총합은 13만 714명 규모이며, 경상남도 세라믹 기업 고용인원 총합은 1만 607명 규모임

^{13) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행 14) 2015 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행

○ 경상남도 세라믹 기업 중 세라믹 원자재·기초소재 생산 업체의 경우 전체의 83.4%가, 세라믹 가공·성형 업체의 경우 전체의 96.7%가 연매출 100억원 이하의 소기업임

[그림 31] 경상남도 세라믹 원자재·기초소재 생산업체 매출액 규모별 업체수 비중


[그림 32] 경상남도 세라믹 가공·성형 제품 생산업체 매출액 규모별 업체수 비중

- □ 경상남도 세라믹산업 세부분야별 업체 수 및 집적도 검토 결과 고령토, 도자기 및 요업제품, 광학용 유리, 세라믹 섬유·복합재료 등이 유의미한 분야로 확인됨15)
 - 세라믹 원자재·기초소재 세부분야에서는 '고령토 및 기타 점토 광업', '석면, 악면 및 유사제품 제조업' 등이 규모(업체 수)와 집적도 측면에서 유의미한 것으로 확인됨16)17)
 - '고령토 및 기타 점토 광업' 분야 업체 수는 33개로 전국 대비 약 51% 수준이며, 집적도 또한 3 이상으로 매우 높은 수준임
 - '석면, 암면 및 유사제품 제조업' 분야 업체 수는 25개로 전국 대비 약 13% 수준이며, 집적도 또한 1.6 이상으로 해당 분야의 집적을 확인함
 - 세라믹 가공·성형 제품 세부분야에서는 '위생용 도자기 제조업', '구조용 정형내화제품 제조업', '타일 및 유사 비내화 요업제품 제조업' 등이 규모(업체 수)와 집적도 측면에서 유의미한 것으로 확인됨
 - '위생용 도자기 제조업' 분야 업체 수는 16개로 전국 대비 약 14% 수준이며, 집적도 또한 1.2 이상으로 해당 분야의 집적을 확인함
 - '구조용 정형내화제품 제조업' 분야 업체 수는 24개로 전국 대비 약 29% 수준이며, 집적도 또한 1.4 이상으로 해당 분야의 집적을 확인함
 - '타일 및 유사 비내화 요업제품 제조업' 분야 업체 수는 13개로 전국 대비 약 17% 수준이며, 집적도 또한 2 이상으로 높은 수준임

^{15) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행

¹⁶⁾ 업체 수가 10개 이상, 전국 대비 10% 이상의 비중을 차지하면서 집적도 1 이상인 경우 유의미한 것으로 판단함

^{17) &#}x27;경상남도 A 산업 집적도 = 경상남도 A산업 비중/전국 A산업 비중' 의미하며, 집적도 1 이상일 경우 해당 산업이 경상남도에 집적된 것으로 판단함

[그림 33] 경상남도 세라믹 산업 현황 (업체 수 10개, 업체 수 비중 10%, 집적도 1 이상)

[표 16] 경상남도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
연 및 아연 광업	-	0.0%	0.00	0.00
그외 기타 비철금속 광업	1	0.0%	0.00	0.00
석회석 광업	-	0.0%	0.00	0.00
고령토 및 기타 점토 광업	<u>33</u>	<u>50.8%</u>	<u>3.37</u>	<u>3.66</u>
건설용 석재 채굴업	9	8.5%	0.87	1.29
모래 및 자갈 채취업	<u>17</u>	6.3%	0.47	0.37
화학용 및 비료원료용 광물 광업	1	6.3%	0.25	0.44
그외 기타 비금속광물 광업	1	2.5%	0.06	0.01
기타 기초무기화학물질 제조업	<u>25</u>	7.4%	0.17	0.10
무기안료 및 기타금속산화물 제조업	9	17.6%	0.99	1.10
질소, 인산 및 칼리질 비료 제조업	3	6.8%	0.35	0.71
요업용 유약 및 관련제품 제조업	2	4.3%	0.56	0.25
시멘트 제조업	3	3.2%	0.08	0.03
석회 및 플라스터 제조업	7	7.7%	0.64	0.40
비내화 모르타르 제조업	8	8.8%	0.72	0.27
레미콘 제조업	113	10.7%	0.98	1.06
플라스터 제품 제조업	3	10.7%	0.08	0.00
섬유시멘트 제품 제조업	4	14.3%	1.68	2.88
연마재 제조업	-	0.0%	0.77	1.14
비금속광물 분쇄물 생산업	<u>15</u>	6.3%	0.45	0.46
석면, 암면 및 유사제품 제조업	<u>25</u>	12.6%	1.97	1.68
기타 분류안된 비금속 광물제품 제조업	<u>26</u>	9.0%	<u>1.15</u>	1.52

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상

[표 17] 경상남도 세라믹 성형·가공 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
판유리 제조업	-	0.0%	0.00	0.00
유리섬유 및 광학용 유리 제조업	<u>15</u>	<u>12.4%</u>	<u>2.05</u>	<u>1.73</u>
판유리 가공품 제조업	<u>94</u>	7.3%	0.58	0.61
기타 산업용 유리제품 제조업	7	3.4%	0.14	0.05
가정용 유리제품 제조업	2	1.7%	0.08	0.02
포장용 유리용기 제조업	2	1.9%	0.26	0.44
그외 기타 유리제품 제조업	2	1.4%	0.06	0.07
가정용 및 장식용 도자기 제조업	<u>198</u>	<u>11.5%</u>	<u>1.03</u>	<u>1.13</u>
위생용 도자기 제조업	<u>16</u>	<u>14.3%</u>	<u>1.71</u>	<u>1.26</u>
산업용 도자기 제조업	<u>12</u>	5.5%	0.39	0.26
기타 일반도자기 제조업	8	<u>11.6%</u>	<u>2.20</u>	<u>3.80</u>
구조용 정형내화제품 제조업	<u>24</u>	<u>18.6%</u>	<u>1.77</u>	<u>1.43</u>
기타 내화요업제품 제조업	<u>15</u>	<u>16.3%</u>	0.69	0.57
점토 벽돌, 블록 및 유사 비내화 요업제품 제조업	<u>17</u>	<u>10.2%</u>	<u>1.01</u>	0.82
타일 및 유사 비내화 요업제품 제조업	<u>13</u>	<u>17.1%</u>	<u>2.03</u>	<u>2.43</u>
기타 구조용 비내화 요업제품 제조업	2	<u>15.4%</u>	0.48	0.16
콘크리트 타일, 기와, 벽돌 및 블록 제조업	<u>73</u>	7.9%	0.77	0.78
기타 구조용 콘크리트제품 제조업	<u>40</u>	7.0%	0.72	1.00
기타 콘크리트 제품 및 유사제품 제조업	4	8.9%	0.26	0.16
건설용 석제품 제조업	146	10.6%	0.95	1.26
기타 석제품 제조업	<u>79</u>	8.2%	0.67	0.67

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상

[표 18] 경상남도 주요 세라믹 기업 현황(1/2)

사업 분야	구분	업체명	지역	주요 세라믹 생산품	매출액 (억원)	종사자 수 (명)
	1	아이에스동서	진주	위생도기, 타일	15,390	1,261
	2	대림비앤코	창원	위생도기, 타일	1,964	917
	3	고려애자공업	창원	고압 전력용 애자	41	48
도기	4	삼영산업	김해	건축용 타일	393	159
타일	5	선경산업	사천	건축용 타일	121	45
- 다일 - ·	6	한본산업	창녕	보도블록, 바닥재	58	21
애자	7	코코세라믹	하동	건축자재, 바닥재	71	73
	8	이화요업	함양	타일, 기와제품	45	98
	9	산청토기와	산청	점토기와	20	20
	10	우미세라믹스	밀양	건축용 타일	23	11
	11	한국내화(진영)	김해	정형/부정형 내화물	2,584	624
III취 모	12	케이알	김해	제철/제강용 내화물	492	110
내화물	13	경동월드와이드	양산	내화재료	130	634
	14	대명케이알	김해	부정형 내화물	80	17
	15	쎄노텍	함안	세라믹 비드	402	65
	16	고려이노테크	창원	실리카 나노튜브 분말, 이차전지 전극 소재	213	113
분말	17	피제이켐텍	양산	산화아연 분말	286	36
비드	18	동우티엠씨	김해	이산화티타늄 분말	258	27
	19	한경티이씨	진주	지르코니아 분말	107	40
	20	낙우산업	산청	고령토 분말	21	32

^{*} 기업신용평가사(NICE평가정보) DB에 등록된 2016년 매출액 및 현재(2017년 12월 기준) 등록되어 있는 최근 종사자 정보 기준으로 작성

[표 19] 경상남도 주요 세라믹 기업 현황(2/2)

사업 분야	구분	업체명	지역	주요 세라믹 생산품	매출액 (억원)	종사자 수 (명)
광학	21	옵트론텍	창원	광학렌즈, 이미지 센서 Glass	1,217	344
렌즈	22	피앤테크	창원	광학렌즈	19	13
· 산업용	23	카바스	창원	광학렌즈	255	97
유리	24	경남모직	김해	건설용 특수 유리	525	187
	25	삼우금속공업	창원	국방/항공 분야 부품	416	260
세라믹 코팅	26	서머텍코리아	창원	항공/에너지 부품	308	88
_	27	에이스코트	함안	터빈 블레이드	75	51
-1-	28	세방전지	창원	전지용 전극	9,590	926
전극	29	해성디에스	창원	방열소재, 그래핀 소재	2,762	891
전자 소재	30	케이피이	창원	태양전지 전극	312	12
^\I	31	아이에스엘계기	창원	센서	45	12
	32	동국알앤에스	창원	파인세라믹 부품, 내화물	670	64
파인	33	제씨콤	양산	광통신 부품	185	52
세라믹	34	한진필터	양산	세라믹 필터	34	28
	35	에스코	밀양	세라믹 촉매 및 필터	40	19
	36	한국화이바	밀양	유리섬유, 탄소섬유 및 복합재료	1,321	560
	37	한국카본	밀양	탄소섬유 및 복합재료	2,552	480
세라믹 섬유	38	신금하	김해	복합재료 활용 가스터빈엔진, 레이돔	204	94
	39	케이지에프	창원	유리섬유, 산업용/건축용 섬유	227	92
복합 재료	40	현대화이바	밀양	유리섬유, 탄소섬유 및 복합재료	138	68
	41	화신특수섬유휠타	김해	카본섬유, 유리섬유	160	74
	42	벽산인슈로	김해	세라믹화이버, 유리섬유	106	25

^{*} 기업신용평가사(NICE평가정보) DB에 등록된 2016년 매출액 및 현재(2017년 12월 기준) 등록되어 있는 최근 종사자 정보 기준으로 작성

나. 세라믹 수요산업 현황

- □ 경상남도는 제조업 중심의 경제구조가 형성되어 있으나, 최근 경쟁력이 약화되고 있는 상황임
 - O 2016년 기준 경상남도 제조업 부가가치 규모는 42조 1,932억 원으로 전국 16개 시·도 중 4번째로 높음¹⁸)
 - O 2016년 기준 경상남도 총 부가가치 중 제조업의 비중은 42.8%로 전국 16개 시·도 중 5번째로 높음¹⁹)

[표 20] 전국 시도별 제조업 부가가치 및 비중 현황(2016년)

시·도	제조업 부가가치 (백만원)	제조업 부가가치 순위	총 부가가치 중 제조업 부가가치 비중	총 부가가치 중 제조업 부가가치 비중 순위	
경기도	123,982,004	1	36.2%	6	
충청남도	52,643,944	2	50.3%	2	
경상북도	42,438,647	3	45.8%	3	
<u>경상남도</u>	42,193,229	<u>4</u>	42.8%	<u>5</u>	
울산광역시	34,736,986	5	63.1%	1	
충청북도	22,529,650	6	43.7%	4	
서울특별시	20,157,884	7	6.2%	15	
인천광역시	20,043,736	8	27.2%	10	
전라남도	19,963,079	9	34.1%	7	
부산광역시	14,639,373	10	19.8%	12	
전라북도	11,853,692	11	27.4%	9	
대구광역시	10,024,112	12	21.9%	11	
광주광역시	8,456,201	13	27.4%	8	
대전광역시	5,982,740	14	17.9%	13	
강원도	3,677,903	15	9.5%	14	
제주도	498,006	16	3.2%	16	

¹⁸⁾ 지역소득(통계청, 2018), 당해년가격 기준

¹⁹⁾ 지역소득(통계청, 2018), 당해년가격 기준으로 ㈜날리지웍스 산출

- O 전국 제조업 총부가가치 규모는 상승 추세를 유지한 반면, 경상남도 제조업 총부가가치 규모는 2011년을 기점으로 감소 추세에 들어섬20)
 - 경상남도 제조업 총부가가치 규모는 2001년부터 2011년까지 연평균 7.2% 수준으로 성장함
 - 2011년 이후 전국 제조업 총부가가치 규모는 연평균 3.0% 성장한 반면, 동기간동안 경상남도는 연평균 1.3% 수준으로 감소함

²⁰⁾ 지역소득(통계청, 2018), 2010년 기준가격 바탕으로 ㈜날리지웍스 분석

- 82 -

- □ 경상남도 제조업 세부 산업별 출하액 변화 추이를 검토한 결과, 출하액 비중이 높은 산업 전반적으로 출하액이 감소하거나 성장 추세가 둔화된 것을 확인함
 - O 금속, 기계, 선박 분야는 최근 5년간 출하액이 감소 추세로 들어섰으며, 직전 5년 대비 연평균성장률이 두 자리 수 이상 감소함²¹⁾
 - 금속 분야 출하액은 2006년부터 2011년까지 연평균 13.2% 성장한 반면, 2011년부터 2016년까지 연평균 2.5% 감소함
 - 기계 분야 출하액은 2006년부터 2011년까지 연평균 9.5% 성장한 반면, 2011년부터 2016년까지 연평균 9.0% 감소함
 - 선박 분야 출하액은 2006년부터 2011년까지 연평균 19.1% 수준으로 급격히 성장한 반면, 2011년부터 2016년까지 연평균 6.0% 감소함
 - O 전기장비, 자동차 분야는 최근 5년간 출하액의 성장 추세는 유지하였으나, 직전 5년 대비 성장률은 둔화됨22)
 - 전기장비 분야 출하액은 2006년부터 2011년까지 연평균 9.6% 성장한 반면, 2011년부터 2016년까지 연평균 6.5% 성장해 성장률 둔화를 보임
 - 자동차 분야 출하액은 2006년부터 2011년까지 연평균 18.0% 성장한 반면, 2011년부터 2016년까지 연평균 4.1% 성장해 성장률 둔화를 보임

²¹⁾ 광업제조업조사(통계청, 2018) 바탕으로 ㈜날리지웍스 분석

²²⁾ 광업제조업조사(통계청, 2018) 바탕으로 ㈜날리지웍스 분석

[표 21] 경상남도 제조업 세부 분류별 출하액 비중 및 성장률

경상남도 제조업 세부 분류	경상남도 제조업 출하액 중 해당 산업 비중	출하액 연평균성장률(A) (2006 ~ 2011)	출하액 연평균성장률(B) (2011~2016)	(B) - (A)
광업	0.1%	3.5%	6.3%	2.7%
식음료·담배	5.8%	9.3%	2.7%	-6.6%
섬유·의복·피혁제품	0.9%	-0.7%	0.3%	1.0%
목재·종이	1.5%	8.2%	-1.3%	-9.5%
인쇄·기록매체	0.1%	N/A	N/A	N/A
석유·화학	7.7%	7.1%	3.9%	-3.2%
의료·의약	0.1%	29.8%	-14.7%	-44.5%
비금속 광물	1.7%	4.6%	4.0%	-0.6%
<u>금속</u>	18.6%	13.2%	-2.5%	-15.8%
전자·통신	1.1%	1.1%	-20.9%	-21.9%
정밀·광학·시계	0.7%	-11.2%	-1.9%	9.3%
전기장비	9.5%	9.6%	<u>6.5%</u>	-3.1%
<u>기계</u>	13.2%	9.5%	-9.0%	-18.5%
<u>자동차</u>	11.7%	18.0%	4.1%	-13.9%
선박	20.9%	19.1%	-6.0%	-25.1%
철도	1.4%	6.0%	-3.8%	-9.8%
항공	3.9%	13.1%	14.4%	1.3%
기타 운송장비	0.8%	18.6%	-12.3%	-30.9%
가구·기타제품	0.3%	15.3%	-11.4%	-26.7%

* **밑줄** : 출하액 비중 약 10% 이상인 산업

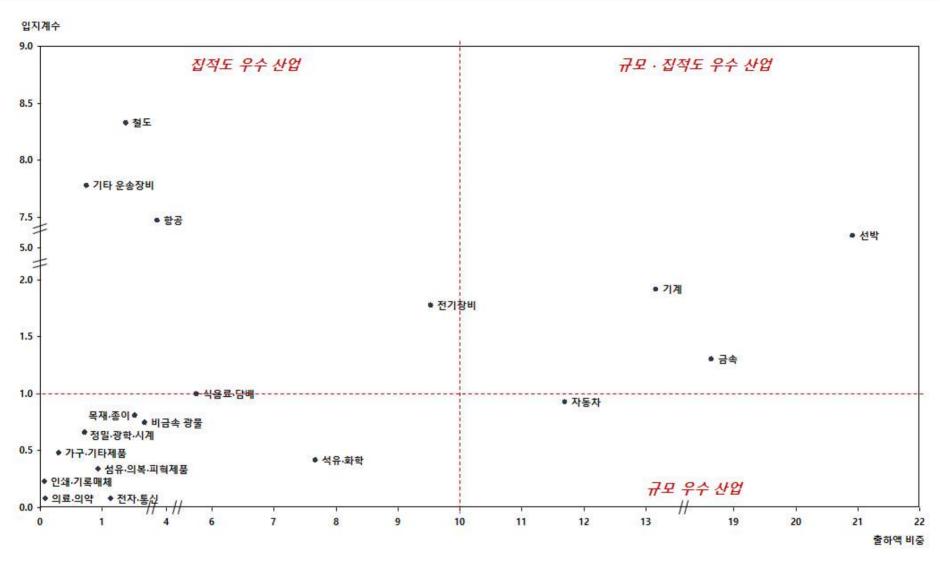
- □ 경상남도 제조업 세부 산업별 집적도(입지계수) 검토 결과 금속, 전기장비, 기계 및 운송장비(자동차, 선박, 철도, 항공 등)분야가 집적되어 있는 것으로 확인됨23)
 - O 금속 분야 고용인원 기준 입지계수는 1.32, 매출액 기준 입지계수는 1.30으로 전국 평균 대비 경상남도 집적을 확인함
 - O 전기장비 분야 고용인원 기준 입지계수는 1.01, 매출액 기준 입지계수는 1.77으로 매출액 규모가 큰 기업이 다수 집적된 것으로 판단됨
 - 기계 분야 고용인원 기준 입지계수는 1.12, 매출액 기준 입지계수는 1.91로 매출액 규모가 큰 기업이 다수 집적된 것으로 판단됨
 - O 자동차 분야 고용인원 기준 입지계수는 1.12, 매출액 기준 입지계수는 0.92로 타 집적산업 대비 집적 정도가 높지 않은 것으로 나타남
 - O 선박 분야 고용인원 기준 입지계수는 4.35, 매출액 기준 입지계수는 5.10으로 높은 수준의 집적도를 보임
 - O 철도 분야 고용인원 기준 입지계수는 4.98, 매출액 기준 입지계수는 8.32로 높은 수준이며, 특히 매출액 규모가 큰 기업이 다수 집적된 것으로 판단됨
 - O 항공 분야 고용인원 기준 입지계수는 6.22, 매출액 기준 입지계수는 7.47로 매우 높은 수준으로 집적됨
 - O 기타 운송장비(전투용 차량, 모터사이클 등) 분야 고용인원 기준 입지계수는 4.89, 매출액 기준 입지계수는 7.77로 매우 높은 수준임

^{23) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석

[표 22] 경상남도 제조업 세부 분류별 집적도(2015년 기준)

경상남도 제조업 세부 분류	고용인원 기준 집적도 (입지계수)	매출액 기준 집적도 (입지계수)
식음료·담배	0.80	0.99
섬유·의복·피혁제품	0.28	0.33
목재·종이	0.70	0.80
인쇄·기록매체	0.27	0.22
석유·화학	0.81	0.41
의료·의약	0.16	0.07
비금속 광물	0.79	0.74
금속	1.32	<u>1.30</u>
전자·통신	0.18	0.07
정밀·광학·시계	0.57	0.65
전기장비	1.01	<u>1.77</u>
<u>기계</u>	1.38	1.91
<u>자동차</u>	1.12	0.92
선박	4.35	5.10
<u>철도</u>	<u>4.98</u>	8.32
항공	6.22	<u>7.47</u>
기타 운송장비	<u>4.89</u>	<u>7.77</u>
가구·기타제품	0.43	0.47

* **밑줄** : 입지계수 1 이상인 산업


[표 23] 참고. 경상남도 제조업 세부 분류 - 표준산업분류 세분류 대응표(1/2)

경상남도 제조업 세부 분류	표준산업분류 세분류
광업	토사석 광업
	도축,육류 가공 및 저장 처리업
	수산물 가공 및 저장 처리업
	과실, 채소 가공 및 저장 처리업
	동물성 및 식물성 유지 제조업
	낙농제품 및 식용빙과류 제조업
식음료·담배	곡물가공품, 전분 및 전분제품 제조업
	기타 식품 제조업
	동물용 사료 및 조제식품 제조업
	알콜음료제조업
	비알콜음료 및 얼음 제조업
	담배제조업
	방적 및 가공사 제조업
	직물직조 및 직물제품 제조업
	편조원단 및 편조제품 제조업
	섬유제품 염색, 정리 및 마무리 가공업
 섬유·의복·피혁제품	기타 섬유제품 제조업
ᆸᅲᄀᅼᅚᆈᅧᄱᆸ	봉제의복제조업
	편조의복 제조업
	의복 액세서리 제조업
	가죽,가방 및 유사제품 제조업
	신발 및 신발부분품 제조업
	제재및 목재 가공업
	나무제품 제조업
목재·종이	코르크 및 조물 제품 제조업
	펄프,종이 및 판지 제조업
	골판지, 종이 상자 및 종이 용기 제조업
	기타 종이 및 판지 제품 제조업
인쇄·기록매체	인쇄및 인쇄관련 산업
	코크스및 연탄 제조업
	석유 정제품 제조업
	기초화학물질제조업
40 44	비료 및 질소화합물 제조업
석유·화학	합성고무 및 플라스틱 물질 제조업
	기타 화학제품 제조업
	화학섬유 제조업
	고무제품제조업
	플라스틱제품 제조업
	기초의약물질 및 생물학적 제제 제조업
의료·의약	의약품 제조업
	의료용품 및 기타 의약관련제품 제조업
	의료용기기 제조업

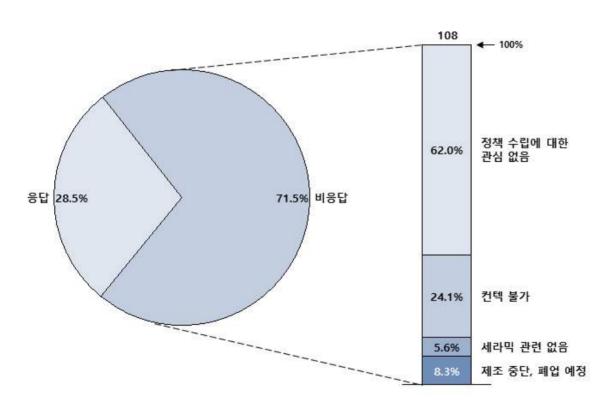
[표 24] 참고. 경상남도 제조업 세부 분류 - 표준산업분류 세분류 대응표(2/2)

경상남도 제조업 세부 분류	표준산업분류 세분류
	유리및 유리제품 제조업
비금속 광물	도자기 및 기타 요업제품 제조업
	시멘트, 석회, 플라스터 및 그 제품 제조업
	기타 비금속 광물제품 제조업
	1차철강 제조업
	1차 비철금속 제조업
금속	금속 주조업
	구조용금속제품, 탱크 및 증기발생기 제조업
	무기 및 총포탄 제조업
	기타 금속가공제품 제조업
	반도체제조업
	전자부품 제조업
전자·통신	컴퓨터 및 주변장치 제조업
	통신 및 방송 장비 제조업
	영상 및 음향기기 제조업
	측정, 시험, 항해, 제어 및 기타 정밀기기 제조업; 광학기기 제외
정밀·광학·시계	안경, 사진장비 및 기타 광학기기 제조업
	시계 및 시계부품 제조업
	전동기,발전기 및 전기 변환 · 공급 · 제어 장치 제조업
	일차전지 및 축전지 제조업
진기장비 전기장비	절연선 및 케이블 제조업
	전구 및 조명장치 제조업
	가정용 기기 제조업
	기타 전기장비 제조업
기계	일반목적용 기계 제조업
	특수 목적용 기계 제조업
	자동차용엔진 및 자동차 제조업
자동차	자동차 차체 및 트레일러 제조업
	자동차 부품 제조업
선박	선박및 보트 건조업
철도	철도장비 제조업
항공기,우주선 및 부품 제조업	
기타 운송장비	그외 기타 운송장비 제조업
	가구제조업
	귀금속및 장신용품 제조업
가구·기타제품	악기 제조업
	운동 및 경기용구 제조업
	인형,장난감 및 오락용품 제조업
	그외 기타 제품 제조업

[그림 35] 경상남도 제조업 세부 분류별 집적도(매출액 기준) 및 출하액 비중 종합

3. 경상남도 세라믹 기업 설문조사

가. 세라믹 기업 설문조사

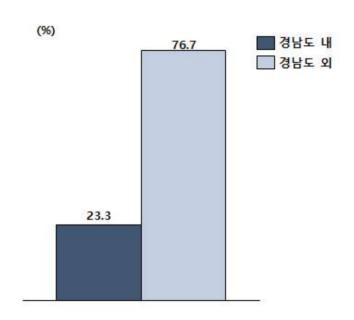

- (1) 조사개요
 - □ 조사목적
 - O 경남도 내 세라믹 기업의 사업 추진 현황 파악 및 세라믹 기업에 대한 정부 정책적인 지원 수요파악을 위해 수행함
 - □ 조사기간
 - O 2018.02.12 ~ 2018.04.01
 - □ 조사방법
 - O 유선으로 설문조사 배경 및 목적 등에 대한 설명 후 온라인 및 팩스로 설문조사서 배포하고 회수하는 방식으로 설문을 수행함

□ 조사대상

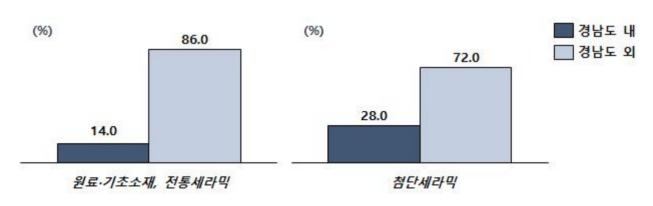
- O 경남 소재 세라믹 기업 중 첨단 세라믹 기업 및 일정 규모 이상의 전통 세라믹 기업을 대상으로 함
 - 통계청 경제총조사 참여 기업 중 주 사업의 산업분류가 비금속 광물 광업, 비금속 광물제품 제조업에 해당 되는 기업 도출(1,101개 기업)
 - 추가적으로 한국세라믹기술원이 보유한 세라믹 기업 목록, 세라믹연합회회원 목록, 세라믹 관련 특허 보유기업, 세라믹 관련성이 있을 것으로 예상되는 산업분류 기업 등을 조사하여 추가 기업 도출(110개 기업)
 - 해당 1,211개 기업에 대한 추가 정보 조사를 바탕으로 첨단 세라믹 생산기업, 전통 세라믹 기업(판유리 가공, 도자기 공방 등은 제외) 중 일정 규모 이상의 기업을 추출(254개 기업)
 - 경상남도 의견을 수렴하여 건설 분야 전통 세라믹 기업을 제외한 최종 설문 대상기업을 확정(151개 기업)

(2) 조사결과

- □ 설문 조사 대상 151개 기업 중 43개 기업이 설문에 응답했으며, 이중 34개 기업이 실질적인 세라믹 생산 기업으로 확인됨
 - O 151개 기업 중 응답 기업은 28.5%(43개社) 수준 이며, 비응답 기업은 71.5%(108개社)로 이유로는 정책 수립에 대한 관심 없음이 가장 높았음
 - 기타 비응답 이유로는 컨택 불가(연락정보 변경, 폐업 등) 24.1%, 세라믹 제품 제조 중단 혹은 폐업 예정 8.3%, 세라믹 관련성 없음으로 응답한 기업이 5.6% 수준임

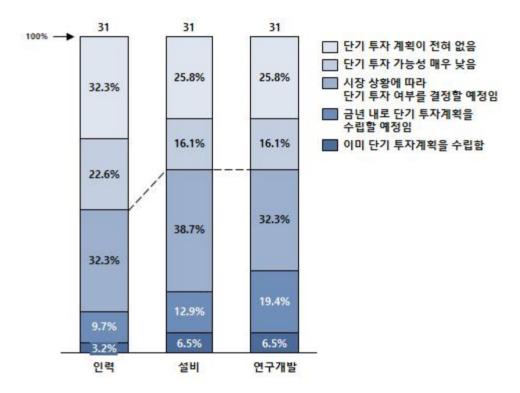

[그림 36] 경상남도 세라믹 기업 설문조사 응답결과

- O 응답기업 중 실질적으로 세라믹 제품을 생산하고 있는 기업은 79.1%로 세라믹 원료·기초소재, 전통세라믹, 첨단세라믹 제품 등을 생산하는 기업임
 - 원료·기초소재 생산기업은 11.7%로 세라믹 분말 원료(7.0%) 및 기타 무기화학 물질(석회분말·시멘트 등, 4.7%)을 생산함
 - 전통세라믹 생산기업은 28.0%로 도자기/타일/위생도기 생산 기업이 가장 많았으며(16.3%), 그 외에 내화물(7.0%) 및 애자(4.7%)를 생산하는 기업 등임
 - 첨단세라믹 생산기업은 세라믹섬유/복합재료 생산 기업(16.3%), 광학/ 전자부품 생산 기업(16.3%)이 주를 이름
 - 응답 기업 중 非 세라믹 기업은 20.9%로 금속 소재 또는 유기화학 소재 등을 활용한 제품을 생산함


[표 25] 경상남도 세라믹 기업 설문조사 응답기업 생산품목별 비중

구분		생산품목	비중(%)
		세라믹 분말 원료	7.0
	원료·기초소재	기타 무기화학 물질	4.7
		내화물	7.0
וחובות	전통세라믹 천통세라믹 첨단세라믹	도자기/타일/위생도기	16.3
세다릭		애자	4.7
		광학/전자부품	16.3
		세라믹섬유/복합재료	18.6
		기타 엔지니어링세라믹	4.7
非 세라믹		금속/유기화학 소재 활용	20.9

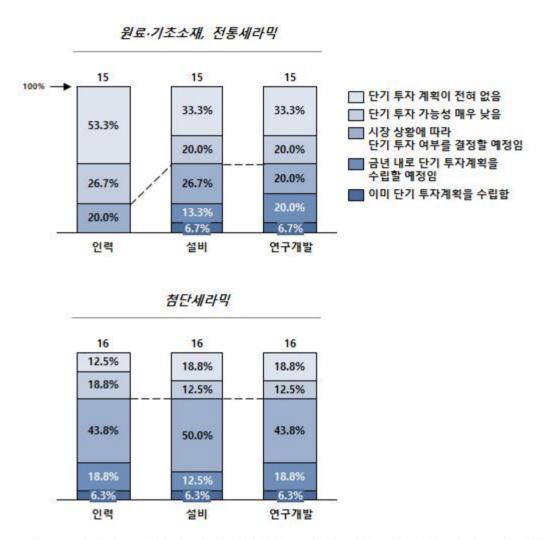
- □ 경상남도 세라믹 기업은 주로 경상남도 外 지역에 소재한 수요처로부터 매출이 발생하는 것으로 확인됨24)
 - O 경상남도 세라믹 기업의 수요처 소재지별 매출액 비중은, 경상남도 內 수요처가 23.3%, 경상남도 外 수요처가 76.7% 수준인 것으로 나타남
 - 원료·기초소재나 전통세라믹 생산기업에 비해 첨단세라믹 생산기업의 지역 내 수요처 대상 매출액 비중이 높게 나타남
 - 첨단 세라믹 생산기업 매출액 중 경상남도 내 매출액 비중은 28.0%이며, 원료·기초소재 및 전통세라믹 매출액 중 도내 매출액 비중은 14.0% 수준임


[그림 37] 경상남도 세라믹 기업 수요처 별 매출액 비중

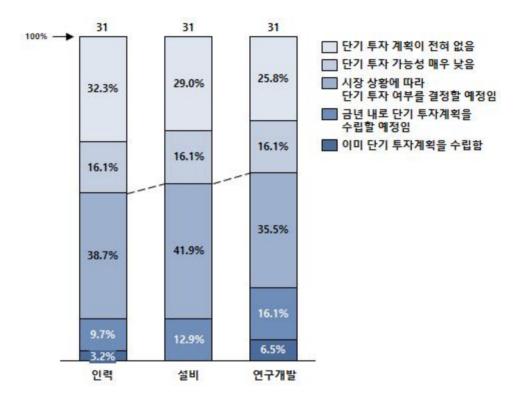
[그림 38] 경상남도 세라믹 기업 생산품목 유형별/수요처 별 매출액 비중

²⁴⁾ 설문 응답기업 34개 중 수요처 소재지별 매출액 비중을 응답한 15개 기업 기준

- □ 경상남도 세라믹 기업은 기존 생산제품과 관련하여 인력 투자에 비해 연구개발 및 설비 투자에 대한 긍정적 의향을 보임²⁵)
 - O 경상남도 세라믹 기업 중 연구개발 투자에 대해 긍정적 의향을 보인 기업은 58.2%, 설비 투자는 58.1% 수준임
 - O 반면, 인력 투자에 대해 긍정적 의향을 보인 기업은 45.1% 수준에 그침


[그림 39] 경상남도 세라믹 기업 기존 생산제품 관련 투자계획

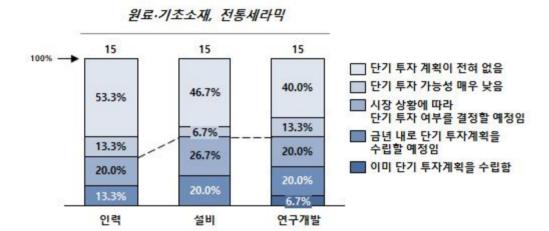
²⁵⁾ 설문 응답기업 34개 중 기존제품 관련 투자계획을 응답한 31개 기업 기준

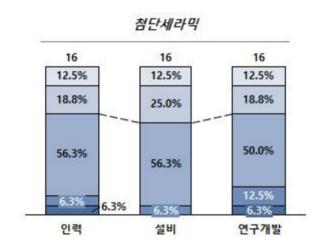

- 94 -

- O 첨단세라믹 생산기업 중 기존 생산제품 관련 추가 투자에 긍정적 의향을 제시한 기업 비중이 원료·기초소재 및 전통세라믹 생산기업에 비해 높음
 - 원료·기초소재 및 전통세라믹 생산 기업 중 인력, 설비, 연구개발 관련 긍정적 투자 의향을 응답한 기업 비중은 각각 20.0%, 46.7%, 46.7%로 첨단 세라믹 생산 기업(각각 68.9%, 68.8%, 68.9%)에 비해 소극적임

[그림 40] 경상남도 세라믹 기업 생산품목 유형별 기존 생산제품 관련 투자계획

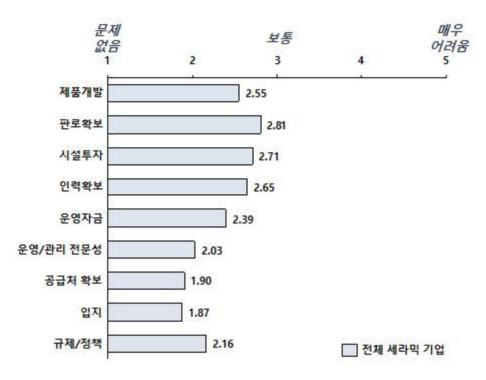
- □ 경상남도 세라믹 기업 중 신제품 관련 투자계획 또한 인력이나 설비 투자에 비해 연구개발 투자에 대한 긍정적 의향을 제시한 기업의 비중이 높음²⁶)
 - 경상남도 세라믹 기업 중 신제품 관련하여 연구개발 투자에 대한 긍정적 의향을 보인 기업 비중은 58.1% 수준임
 - O 반면, 인력 투자에 긍정적 의견을 보인 기업 비중은 51.6%, 설비 투자는 54.9%에 그침


[그림 41] 세라믹 기업 신제품 관련 투자계획


²⁶⁾ 설문 응답기업 34개 중 신제품 관련 투자계획을 응답한 31개 기업 기준

- 96 -

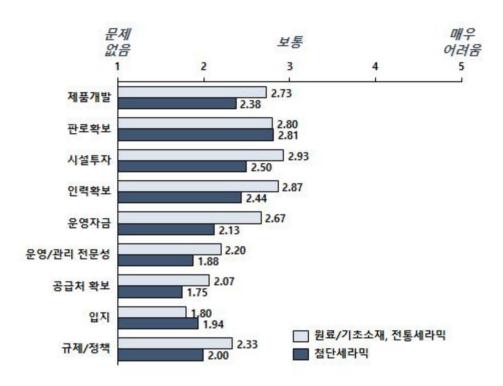
- O 첨단세라믹 생산 기업은 원료·기초 소재 및 전통 세라믹 생산 기업에 비해 신제품 관련 추가투자에 대해 긍정적임
 - 첨단세라믹 생산 기업은 인력, 장비, 연구개발에 대해 각각 68.9%, 62.6%, 68.8% 긍정적 의향을 제시한데 비해 원료·기초소재 및 전통 세라믹 생산 기업은 각각 33.3%, 46.7%, 46.7%가 긍정적 의향을 제시함


[그림 42] 경상남도 세라믹 기업 생산품목 유형별 신제품 관련 투자계획

○ 신제품 개발 품목에 대해 전통 세라믹 분야에서는 내화물 및 도자기·타일· 위생도기, 첨단세라믹 분야에서는 광학·전자부품, 세라믹 섬유·복합재료, 엔지니어링 세라믹 관련 신제품 투자계획을 응답함

[표 26] 세라믹 기업 신제품 관련 투자계획 세부내용

구분	분류	세부내용
	내화물(2건)	■ 부정형 내열 구조재 ■ 내화 코팅 소재 등
전통세라믹	도자기·타일·위생도기(4건)	기능성 타일컬러 내열 뚝배기색상 기와 등
첨단세라믹	광학· 전자부품(6건)	■ 고강도 내마모 코팅소재 및 플렉서블 스마트폰용 코팅소재 ■ 비정질 리본 소재 ■ AGM 배터리 소재 ■ 퍼들램프· 의료기기·프로젝터용 렌즈 ■ 카메라· 휴대폰용 렌즈 ■ 태양전지 소재 등
	세라믹 섬유·복합재료(4건)	 유리섬유 코팅 제품 세라믹 복합재료 폴 GRE 파이프(내화학 용 등) 난연 유리섬유 가공품, 유리섬유 방화용 가공제품, 자동차 부품용 복합재료 등
	엔지니어링 세라믹(1건)	■ 임플란트 소재, 초소형 세라믹 비드 등


- □ 경상남도 세라믹 기업의 운영상 애로사항 중 판로확보, 시설투자, 인력확보, 제품개발 등이 주요 애로사항으로 확인됨27)
 - O 판로확보는 5점 척도 중 응답 값 평균이 2.81로 가장 높게 나타났으며, 시설투자(2.71), 인력확보(2.65), 제품개발(2.55) 순으로 애로사항이 확인됨

[그림 43] 경상남도 세라믹 기업 애로사항

²⁷⁾ 설문 응답기업 34개 중 애로사항을 응답한 31개 기업 기준

- O 전반적으로 첨단세라믹 기업에 비해 원료·기초소재 및 전통세라믹 기업의 애로사항이 큰 것으로 나타남
 - 판로확보와 입지의 경우에만 첨단세라믹 기업의 애로사항이 원료·기초소재 및 전통세라믹 기업에 비해 높은 수준으로 나타남
 - 원료·기초소재 및 전통세라믹 기업의 경우 시설투자(2.93), 인력확보(2.87) 등의 애로가 가장 큰 것으로 나타남
 - 첨단세라믹 기업의 경우 판로확보(2.81)가 가장 큰 애로사항으로 확인됨

[그림 44] 경상남도 세라믹 기업 생산품목 유형별 기업 애로사항

나. 세라믹 수요기업 조사

(1)	조시	가	요
-----	----	---	---

□ 조사목적

O 경남도 내 세라믹 수요기업의 사업 추진 현황 파악하고 세라믹 수요 및 정부 정책적 지원 수요파악을 위해 수행함

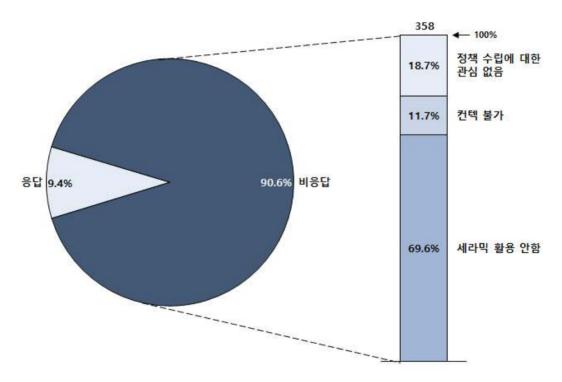
□ 조사기간

- O 2018.03.12. ~ 2018.05.20.
 - 당초 계획상에는 4/30 까지 조사 완료 예정이었으나, 설문조사 응답기업 부족으로 인해 조사기간을 연장하여 진행함

□ 조사방법

O 유선으로 설문조사 배경 및 목적 등에 대한 설명 후 온라인 및 팩스로 설문조사서 배포하고 회수하는 방식으로 설문을 수행함

□ 조사대상


- O 세라믹 소재·부품에 대한 수요가 있을 것으로 예상하는 8대 산업 분야 경남 소재 기업을 대상으로 설문 조사를 수행함
 - 경상남도와 논의를 통해 도출한 8개 산업분야 기업 중 설문조사 대상 기업은 총 395개 社로 산업 분야별 조사 대상 기업 도출 기준은 다음과 같음

[표 27] 설문조사 대상 세라믹 수요기업

분야	조사대상	기업수
가공・공작기계	■ 가공공작기계 제조업 분류 중심으로 구성 ■ 종업원 규모 30인 이상 기업 중심	58개 社
일반기계부품	 일반목적용기계 제조업 분류 중심으로 구성 (베어링, 기어, 동력전달기기, 유압기기 등) 종업원 규모 30인 이상 기업 중심 	66개 社
자동차	 자동차부품 제조업 분류 중심으로 구성 (베어링, 기어, 동력전달기기, 유압기기 등) 종업원 규모 50인 이상 기업 중심 	90개 売生
의료·헬스케어	 의료용 기기 제조업 중심으로 구성 (단순 식품/건강보조식품 제조 기업 제외) 도내 관련 기업이 적어 발굴된 기업은 대부분 적용 	13개 社
전기·에너지	 전동기·발전기, 축전지, 증기발생기, 열 교환기, 터빈제조업 분류 중심으로 구성 (풍력, 태양광 등은 추가 발굴) 종업원 규모 20인 이상 기업 중심 	417州 市土
전자·디스플레이	 반도체, 전자부품, 반도체 및 디스플레이 제조용 기계 제조업 분류 중심으로 구성 종업원 규모 30인 이상 기업 중심 	53개 社
조선·해양	■ 선박·보트 건조업 분류 기업 및 주요 생산품목을 고려해 추가 발굴 ■ 종업원 규모 30인 이상 기업 중심	337州 市士
항공·우주	■ 항공기·우주선 및 부품 제조업 분류 기업 중심으로 구성 ■ 종업원 규모 20인 이상 기업 중심	41개 社

(2) 조사결과

- □ 설문 조사 대상 395개 기업 중 37개 기업이 설문에 응답했으며, 비응답의 주요 원인은 세라믹을 활용하지 않기 때문으로 나타남
 - O 395개 기업 중 응답 기업은 9.4%(37개社) 수준이며, 비응답 기업은 90.6%(358개社)로, 세라믹을 활용하지 않는다고 응답한 기업이 69.6%로 가장 많음
 - 기타 비응답 사유로는 '정책 수립에 대한 관심이 없음' 18.7% '컨텍 불가(연락정보 변경, 폐업 등)' 기업이 11.7% 수준임
 - O 응답기업 중 기계 분야 기업의 비중이 가장 높았으며, 전자/디스플레이, 항공·우주 분야 기업이 그 뒤를 이음

[그림 45] 세라믹 수요기업 설문조사 응답현황

[표 28] 세라믹 수요기업 설문조사 응답기업 생산품목

생산품목	비중(%)
가공/공작기계	18.9
일반기계부품	18.9
자동차	10.8
의료/헬스케어	0
전기/에너지	18.8
전자/디스플레이	16.2
조선/해양플랜트	8.1
항공우주	16.2

- □ 응답한 기업의 19.4%(7개 社)가 현재 세라믹 소재·부품을 활용하고 있다고 응답했으며, 현재 활용 규모를 유지하거나 확대할 것으로 응답함
 - O 가공·공작기계, 자동차 등의 분야에서 세라믹 소재·부품을 활용하고 있으며, 세부 활용 분야는 다음과 같음

[표 29] 세라믹 소재·부품 활용 세부내용

구분	활용 품목	활용 확대 여부
가공·공작기계	워터젯 가공장비 용 노즐	확대
자동차	자동차 자동차 실린더 블록 가공용 인서트 팁	
전기·에너지	가스터빈 버너용 세라믹 컵	확대
	Coal Air Pipe용 세라믹 라이	유지
전자·디스플레이	온풍기/발열체 용 SiC 소재	확대
항공·우주	항공기 부품용 엔지니어링세라믹	유지
	항공기 동체 부품용 유리섬유 화이버	확대

- □ 세라믹 소재·부품의 신규 수요를 응답한 기업은 1개 기업으로 신제품 생산에 활용한 계획을 응답함
 - O 설문 응답 기업 증 신규 수요를 응답한 기업은 비산화물계 분말 소재(질화알루미늄, 탄화규소 등)에 대한 수요가 있음을 응답했으며, 이는 임플란트 치아 Furnace 생산에 활용할 것으로 응답함
- □ 세라믹 소재·부품 미활용 사유로는 소재 특성이 적절하지 않음이 가장 많았으며, 이는 세라믹 소재에 대한 이해도 부족의 결과로 판단됨
 - 소재 특성이 적절하지 않음을 응답한 기업이 18개 社로 가장 많았음
 - 설문응답 세라믹 수요기업 37개 중 세라믹 소재·부품 신규 활용 계획 응답한 26개 기업 기준 분석결과임

[표 30] 세라믹 소재·부품 미활용 사유

미활용 사유	응답기업수
소재 특성이 적절하지 않음	18
부품/소재 공급업체 확보 어려움	0
부품/소재 변경(혹은 도입)을 위한 기술역량/전문인력 부족함	2
부품/소재 변경(혹은 도입)을 위한 신규설비투자 또는 설비전환 어려움	5
부품/소재 변경(혹은 도입)에 대한 고객의 보수적인태도	1
부품/소재 변경(혹은 도입) 후 신뢰성확보 어려움	0
기타	5

- □ 세라믹 소재·부품 활용을 위해 필요한 정책적 지원으로는 연구개발 지원 수요가 가장 많았음
 - 세라믹 소재·부품 활용 확대를 위해 연구개발 지원, 장비/설비투자 지원, 기업연계 및 정보제공 등의 수요를 확인함
 - 설문응답 세라믹 수요기업 37개 중 세라믹 소재·부품 신규 활용 계획 응답한 16개 기업 기준 분석결과임

[표 31] 세라믹 수요 기업 정책수요

정책수요	응답기업수
연구개발 지원	8
세라믹 소재·부품기업 연계, 시장/제품정보제공	4
장비/설비 투자 지원	6
교육	1

4. 경남 세라믹 기업 인터뷰

가. 전통 세라믹 관련 기업 인터뷰

- □ 세라믹 분말·비드 생산기업 C 社
 - O 비드 종류 다변화, 비산화물계 비드, 나노분체에 대한 신제품 개발 계획을 보유하고 있음
 - 공정개선, 설비투자등 품질 개선을 위해 전사차원의 노력 중임
 - O 다양한 시험·분석 장비 활용은 한국세라믹기술원, 재료연구소를 통해 충분히 이루어지고 있음
 - O 기업이 기존에 구축된 인프라를 쉽게 활용할 수 있도록 접근성을 높이는 것이 중요함(정보공유 등)
- □ 위생도기 생산기업 D 社
 - O 새로운 디자인, 기능성(절수/전자통신기술 융합) 위생도기는 지속 개발 중
 - O 지역 고령토는 일부 활용하고 있으나 수입 대비 가격/품질 경쟁력이 낮으며, 지역기업 상생 측면에서 후가공(분쇄, 정제 등)하여 사용 중
 - 위생도기 생산 공정의 정보화·자동화 부족으로 제품 품질 관리·향상에 한계
 - O 다양한 시험·분석 장비 활용은 이미 한국세라믹기술원을 통해 이루어지고 있음
- □ 고령토 분말 생산기업 N 社
 - 고령토를 활용해 석유화학 촉매, 친환경·기능성 페인트, 이산화탄소 흡수제 등 다양한 고부가가치 제품 개발을 시도하고 있음
 - 분말 원료에 대한 전문 인력이 부족하며 중요성 인식 또한 부족한 상황임
 - O 고부가가치 제품 개발을 위한 충분한 지원이 이루어지지 못하고 있음

나. 세라믹 분말·성형 관련 기업 인터뷰

산화이	ŀ여	분말	생산기	업	_	Р	社

- 타이어 등 산업용 고무제품 생산 공정에 첨가되는 용도로 주로 판매되고 있음
- O 도내 기계 · 자동차 부품 등 주력산업으로부터 매출 발생은 거의 없는 상황임
- O 산업용 세라믹 분야 진출을 시도해 보았으나 기존 소재와의 경쟁, 수입 분말원료와의 경쟁 등으로 시장진입이 어려움
- □ 지르코니아, 희토류 분말 생산기업 H 社
 - O 전남 TP에 구축된 수열반응기를 활용하고 있으나, 교차 오염등의 문제로 공용 활용에 적절한 장비는 아니며 현재는 단독 활용중인 상황임
 - O 한국세라믹기술원의 인프라 또한 필요시 활용하고 있으며, 재료연구소와의 협력도 이루어지고 있음
 - O 생산 전문인력 및 연구인력 확보에 가장 어려움이 크며, 정책적 지원 수요 또한 가장 높은 분야임

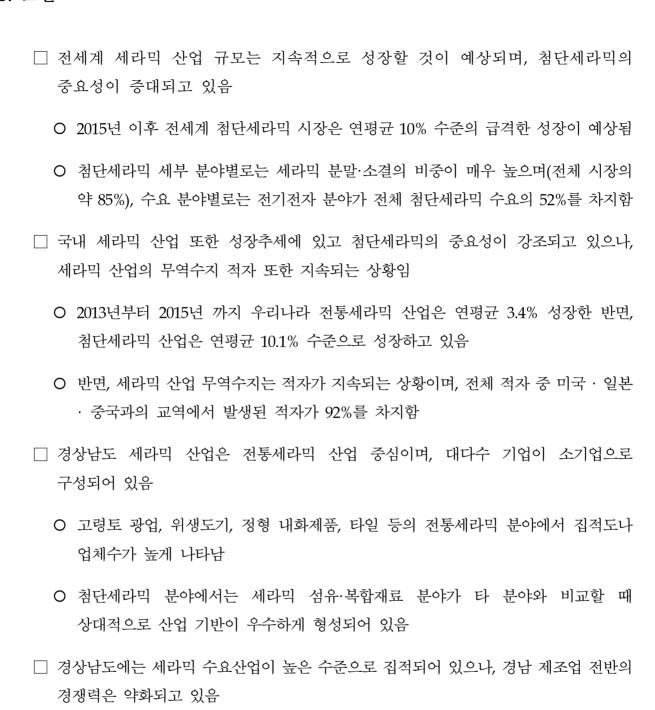
□ 이차전지 소재 생산기업 - K 社

- O 실리카 나노튜브(SNT) 분말을 활용한 제품 개발을 시도하고 있으나, 현재 시장 수요의 부족으로 어려움이 있음
- O 향후 특수 기능성 복합재료 분야에서 시장 형성 가능성이 있다고 보여지나, 장기적 관점에서 준비 필요함
- O 시험 분석, 평가 장비에 대한 수요가 있으나, 정보 및 N/W 부족으로 인해 재료연구소나 한국세라믹기술원과 같은 지역 내 연구기관과의 협력 경험은 없음
- □ 파인세라믹 부품 및 내화물 생산기업 D 社
 - 국내 파인세라믹 부품에 대한 수요처가 매우 한정되어 있어 사업 추진에 어려움

- □ 금속분말소재 생산기업(잠재적 세라믹 사업 확대 가능 기업) P 社
 - 세라믹 분말에 대한 관심은 있으나, 시장 수요가 명확하지 않음
 - O 분말 소재/기술에 전문성을 갖는 인력 확보가 매우 어려움
 - O 분말 소재의 시험/분석에 특화된 인프라 필요하며, 고성능 보다는 기업의 활용성 중요함
- □ 금속분말야금(자동차부품 생산) 기업(잠재적 세라믹 사업 확대 가능 기업) D 社
 - O 세라믹 분말·소결 보다는 세라믹 코팅(내열 · 내부식 · 내마모성 확보)에 대한 수요 높음
 - O 자동차 부품의 경우 경량화가 중요하다보니, 세라믹 분말·소결 부품은 경량화 관점에서 적절성이 낮음
 - O 제품 개발단계에서 다양한 세라믹 코팅을 적용해 볼 수 있는 시제품 생산 인프라 필요함
- □ 금속분말야금(절삭공구 생산) 기업(잠재적 세라믹 사업 확대 가능 기업) W 社
 - O 세라믹 소재의 절삭공구에 대한 관심이 매우 높으며 자체 제품개발 추진하였으나, 사업화 및 시장 진입에 어려움이 있음
 - O 세라믹 절삭공구의 신뢰성을 평가할 수 있는 인프라 필요함

다. 세라믹 코팅 관련 기업 인터뷰

- □ 용사코팅(세라믹코팅 포함) 전문기업 C 社
 - 다양한 수요처의 니즈에 맞춰 다품종 소량 생산하는 구조임(전체 매출 중 분야별 비중 : 발전 20~30%, 정유 20~30%, 선박 20% 수준)
 - 세라믹코팅이 요구되는 환경이 워낙 다양하다 보니 수요처의 요구조건에서 내구성 확보 가능한지 사전에 가늠하기 어려움
 - O 샘플을 잠재 수요처에서 직접 테스트하고 있으나 기회가 많지 않고, 결과가 좋지 않을 경우 수주에 실패하는 경우도 다수임
 - O 다양한 환경(고온, 산화, 부식, 마모 등)에서, 다양한 코팅 소재/기법의 조합으로 내구성을 테스트할 수 있는 인프라가 있다면 수주 확대에 많은 도움이 될 것으로 예상됨
 - O 재직 인력이 전문성을 강화할 수 있도록 시험분석 기법 · 신규코팅기술에 대한 교육 필요함
 - O 잠재 수요기업과 N/W 형성될 수 있도록 교류회 등의 지원 필요함
- □ 용사코팅(세라믹코팅 포함) 전문기업 T 社
 - 모기업에 항공부품을 주로 납품하고 있으며, 단기적인 제품 확대 계획은 없음
 - O 모기업으로부터 발생되는 물량이 증가하는 추세로, 자체적인 시장 확대 필요성 낮음
 - 세라믹 코팅의 내구성을 평가할 수 있는 인프라 필요성 높음
- □ 금속(은, 크롬, 니켈 등) 도금 전문기업(잠재적 세라믹 사업 확대 가능 기업) C 社
 - 세라믹 코팅 분야로 진출 준비중으로, 장비도입 및 제품 개발 중에 있음
 - 〇 해외기업 사프란社에 랜딩기어 공급을 위해 접촉 중임


- 세라믹 코팅장비 도입 과정에서 사전 장비 활용 및 시제품 제작 등의 수요가 있었으나, 해당 장비가 구축된 공공인프라가 없어 어려움이 있었음 (재료연구소 전문가 자문 받음)
- O 기존 금속도금 기업 중 세라믹 코팅에 관심 있는 기업은 많으며, 이러한 기업이 사전에 장비를 활용하고 시제품을 제작할 수 있는 인프라 필요함
- 인프라 구축 시 세라믹 코팅이 적용된 난삭재 부품의 후가공에 활용할 수 있는 정밀 가공기기가 확보될 필요성 높음

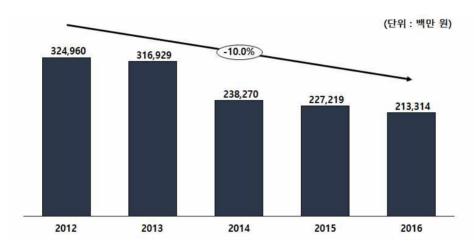
라. 세라믹 섬유·복합재료 관련 기업 인터뷰

- □ 세라믹 섬유·복합재료 생산기업 H 社
 - 현재 레저, 스포츠용품 중심으로 매출이 발생되고 있으며, 도내 조선 · 국방 분야에서 일부 매출이 발생되나 안정적이지 않은 상황임
 - O 항공분야의 경우 인증 문제로 진입장벽이 높아 고려하고 있지 않으며, 자동차 분야를 미래 시장으로 고려하고 있음
 - O 박람회 참가 등을 통해 해외 시장 개척에 노력하고 있으며, 관련된 정부 정책 지원을 받은 적은 없음(지원 사업에 대한 정보가 부족함)
 - O 전문인력의 확보 및 기존인력의 유지 모두 어려운 상황임
 - 경남 지역은 실크 제조 기업이 다수 있고, 해당 기업들의 제직 기술 수준이 우수해 세라믹 섬유 분야로의 사업 확대가 용이할 것으로 보여짐
- □ 세라믹 섬유·복합재료 생산기업 H 社
 - 현재 유리섬유 · 탄소섬유 중심으로 사업 추진 중이며, 새로운 세라믹 섬유 개발 계획은 없음 (운동용품, 선박 단열재로 매출이 발생하였으나 조선산업 침체로 인해 매출 감소)
 - O 자동차/항공 등 신규 수요처 발굴이 절실하나, 수요처 연계나 요구조건 확보에 애로
- □ 복합재료 활용 항공부품 생산기업 K 社
 - O KAI 협력업체로 유리섬유와 탄소섬유를 활용한 항공부품 생산만 이루어지며, KAI의 물량과 공급계획이 한정되어 있어 항공분야 매출성장이 어려운 상황임
 - O 세라믹 섬유 생산기업의 자회사임에도 불구하고 인증문제로 모기업의 섬유 활용 불가능함(인증 등의 문제로 신규기업의 시장진입은 어려울 것으로 예상)
 - O 해외 기업에 직수출 할 수 있도록 시험인증 · 판로개척 지원 필요함

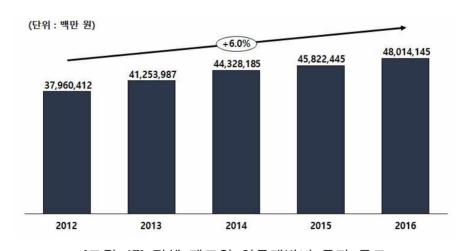
- O 방산 분야로 사업 확대를 시도 중이나(현무암 섬유 활용) 수요처와의 N/W 형성 어려움, 연구개발 기획 단계부터 수요처와 연계할 수 있는 기회 마련 필요함(양산 가능성 제고)
- □ 복합재료 활용 부품 생산기업 K 社
 - O 세라믹 섬유의 경우 가격경쟁력 확보 및 앤드유저 발굴이 중요한 요소임
 - O 경남지역의 차별화된 산업 분야는 항공 분야라고 생각하며, 항공 및 방산 분야에 사업을 집중하고 있음
 - O 새로운 세라믹 섬유·복합재료 적용을 위한 중간재 제조 및 성형 장비, 시험 분석 장비에 대한 수요 높음
 - 기업에 있어 네트워킹은 매우 중요한 요소로 판단되며, 유사 분야·공통 주제 가의 협력이 지속적으로 이루어져야 한다고 생각함
 - 공공분야 수요처와 연계하거나, 해외 마케팅을 지원하는 등 실질적으로 매출 발생에 도움이 되는 지원이 필요함
- □ 복합재료 활용 항공부품 최종 수요 기업 K 社
 - O 단기적으로 유리섬유·탄소섬유 복합재료 외에 세라믹 관련 수요는 없음
 - O 매출의 50% 이상이 민수분야이고 이중 90% 이상이 단순 수주사업으로, 소재 변경이나 공급업체 선정에 있어 KAI의 자유도가 낮음
 - O 보잉/에어버스와 계약된 공급계획에 따라 사업이 추진되며, 해외 항공기 기업 신모델 개발 시 KAI의 수주 정도에 따라 KAI로부터 발생되는 물량이 결정되는 구조임
 - O 군수분야의 경우 생산이 한정적이고 물량 또한 일정하지 않아, 해당 분야를 타겟하여 항공부품 산업을 육성하는 것은 한계가 있다고 봄
 - O 도내 항공부품 기업이 해외 기업에 직수출 할 수 있도록 역량확보 및 판로개척이 되어야 경남 항공 산업 발전 가능하다고 생각함 (한정된 KAI 수요에 의존하지 말아야 함)

5. 소결

- O 주요 세라믹 수요산업인 항공우주, 자동차, 조선해양, 기계, 국방 산업이 높은 수준으로 집적되어 있음
- O 반면, 경남 제조업 전반의 경쟁력이 약화되고 있어 세라믹 신규 수요 창출 및 수요 확대에 어려움이 있음



- □ 경남 세라믹기업의 제품개선·개발 수요가 확인되었으며, 다수의 기업이 판로확보 · 시설투자 및 우수 인력 확보에 어려운 것으로 나타남
 - O 세라믹 기업 설문조사 결과 응답 기업의 58%가 기존제품 개선 · 신제품 개발 관련 R&D 수요 있는 것으로 확인됨
 - O 응답기업의 52%가 판로확보 및 시설투자에, 42%가 인력확보에 어려움이 있는 것으로 확인됨
- □ 경남 세라믹기업 대상의 심층인터뷰 수행 결과 전통세라믹, 세라믹 코팅, 세라믹 섬유·복합재료 분야에서 구체적인 수요를 확인함
 - O [전통세라믹] 중국 등 후발기업과의 경쟁을 위한 제품 품질 제고 및 이를 위한 공정 개선(자동화)이 주요 이슈임
 - O [세라믹 코팅] 경상남도 내 다수 집적해 있는 금속·유기소재 코팅 기업의 세라믹 코팅 분야 사업 확대 수요를 확인하였으며, 이들 기업의 진입 장벽을 낮출 수 있도록 코팅장비 활용 및 후가공(정밀가공)을 통한 시제품 제작 지원이 필요함
 - [세라믹 섬유·복합재료] 주요 수요산업인 항공우주, 국방 산업의 특성상 극한환경 대응 필요성이 높으며, 단순 위탁생산에서 벗어나 고차원의 시장 수요에 대응할 수 있도록 기업의 자체 엔지니어링 역량 강화 지원이 필요함
 - O 유사 업종간의 정보교류 · 잠재수요처와의 연계를 위한 N/W 형성, 해외 시장 개척 지원에 대한 수요는 분야에 상관없이 전반적으로 확인됨

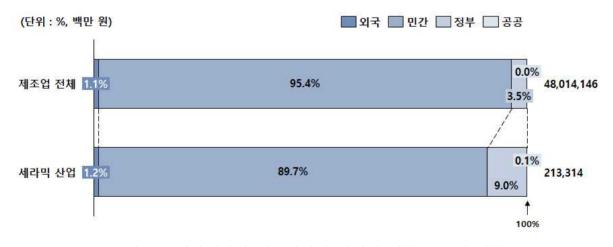

IV. 세라믹 관련 과학·기술 현황

1. 세라믹 분야 연구개발 투자 현황

- □ 한국 세라믹산업 연구개발비 투자 총액은 2016년 기준 2,133억 원 규모이며, 최근 5년간 감소 추세임²⁸)
 - O 한국 세라믹 산업 연구개발비 투자 총액은 2012년 3,250억 원에서 2016년 2,133억 원으로 연평균 10% 수준으로 감소함
 - O 반면, 동기간동안 전체 제조업 연구개발비 투자 총액은 2012년 약 38조 원에서 2016년 약 48조 원으로 연평균 6% 수준으로 증가함


[그림 46] 세라믹산업 연구개발비 투자 규모

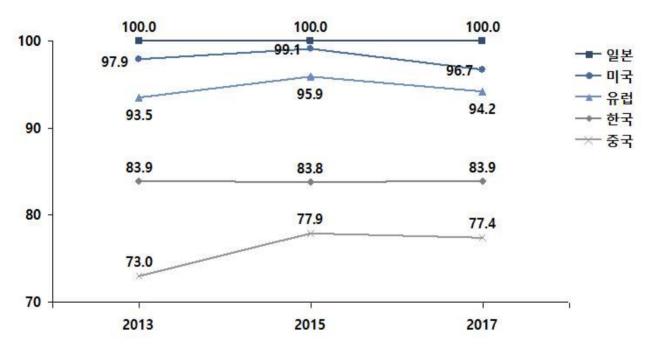
[그림 47] 전체 제조업 연구개발비 투자 규모


^{28) 2012}년도 연구개발활동조사보고서(한국과학기술기획평가원, 2013), 2013년도 연구개발활동조사보고서(한국과학기술기획평가원, 2014), 2014년도 연구개발활동조사보고서(한국과학기술기획평가원, 2015년도 연구개발활동조사보고서(한국과학기술기획평가원, 2016) 2016년도 연구개발활동조사보고서(한국과학기술기획평가원, 2017), 비금속 광물제품 산업분야 값을 세라믹 산업으로 준용

- □ 한국 세라믹산업 연구개발 투자는 제조업 전체 연구개발 투자 대비 개발 단계의 비중이 낮으며, 민간 부문의 투자가 저조한 것으로 나타남29)
 - O 한국 세라믹산업 연구개발 투자 중 개발 단계 비중은 66%로 제조업 전체 연구개발 투자 중 개발 단계 비중 67.4% 대비 1.4%p 낮음
 - O 한국 세라믹산업 연구개발 투자 중 민간 재원 비중은 89.7%로 제조업 전체 연구개발 투자 중 민간 재원 비중 95.4% 대비 5.7%p 낮음

[그림 48] 세라믹산업 연구개발 단계별 연구개발비 투자 비중(2016년 기준)

[그림 49] 세라믹산업 연구개발비 재원별 비중(2016년 기준)


^{29) 2016}년도 연구개발활동조사보고서(한국과학기술기획평가원, 2017), 비금속 광물제품 산업분야 값을 세라믹 산업으로 준용

- 120 -

2. 세라믹 기술 수준

- □ 한국의 세라믹 기술수준은 2017년 기준 최고 기술수준 보유국(일본) 대비 83.9% 수준으로 2013년 이후 상대적 기술 격차를 좁히지 못하고 있음³⁰
 - O 한국 세라믹 기술수준은 최고 기술수준 보유국(일본) 대비 2013년 83.9%, 2015년 83.8%, 2017년 83.9%로 최근 5년간 정체되어 있음
 - O 반면, 중국의 최고 기술수준 보유국 대비 기술수준은 2013년 73.0%에서 2017년 77.4%로 성장하여 한국과의 격차가 감소함

[그림 50] 주요국 세라믹 기술수준(최고 기술수준 보유국 대비 상대적 수준)

^{30) 2013}년 산업기술수준조사 보고서(한국산업기술평가관리원, 2013), 2015년 산업기술수준조사 보고서(한국산업기술평가관리원, 2016), 2017년 산업기술수준조사 보고서(한국산업기술평가관리원, 2018)

- □ 세라믹 분야별 한국의 기술수준을 검토한 결과 전통세라믹을 제외한 대부분의 분야에서 한국 세라믹 종합 기술수준(83.9%) 보다 낮은 것으로 나타남³¹)
 - 광전자소재 분야의 경우 센서 세라믹(80.1%) 분야의 기술수준이 타 세부 분야 대비 낮은 것으로 나타남
 - O 에너지·환경소재 분야의 경우 환경 기능성 세라믹(77.2%) 분야의 기술수준이 타 세부분야 대비 낮은 것으로 나타남
 - 기계·구조소재 분야의 경우 내화·내열 세라믹(85.4%) 분야의 기술수준이 타세부분야에 비해 우수한 것으로 나타남
 - 바이오 소재 분야의 경우 뷰티케어용 세라믹(87.9%) 분야의 기술수준이 타 세부분야 대비 월등히 우수한 것으로 나타남
 - 전통세라믹 분야의 경우 도자기·타일·벽돌·내화물(93.1%) 분야의 기술수준이 전체 세부분야를 통틀어 가장 우수한 것으로 나타남

^{31) 2017}년 산업기술수준조사 보고서(한국산업기술평가관리원, 2018)

[표 32] 세라믹 세부 분야별 주요국 기술수준(2017년 기준)

분류	세부 분류	기술수준(%)				
판 규		한국	일본	미국	유럽	중국
	유전·절연 세라믹	84.3	100	94.3	90.7	75.0
	<u>센서 세라믹</u>	80.1	100	95.0	90.2	72.6
	자성 세라믹	83.1	100	93.3	90.0	76.0
광전자소재	광기능성 세라믹	84.3	100	96.2	92.9	78.5
	도전성 및 반도성 세라믹	84.6	100	95.1	88.7	75.4
	광·전자 세라믹 공정	87.2	100	96.8	91.4	79.3
	광전자소재 종합	82.3	100	95.1	90.8	74.8
	에너지 저장·변환 세라믹	84.4	100	98.7	91.3	79.3
에너지·환경소재	환경 기능성 세라믹	77.2	98.6	86.4	100	70.7
에디지 완경소재	에너지 세라믹 공정	82.1	100	93.4	90.8	75.5
	에너지·환경소재 종합	81.8	100	98.0	95.2	76.1
	내화·내열 세라믹	85.4	99.3	100	95.0	80.3
	구조 및 기계가공성 세라믹	82.5	100	94.5	92.6	75.5
기계·구조소재	세라믹섬유 및 극한환경용 세라믹	81.7	100	97.0	94.6	80.7
	<u>구조세라믹 공정</u>	<u>81.7</u>	100	93.9	92.1	75.3
	기계·구조소재 종합	83.2	100	97.3	94.3	79.2
	조직재생용 세라믹	80.5	91.9	100	91.9	69.8
	체외진단용 세라믹	80.1	100	96.6	89.0	69.9
바이오소재	뷰티케어용 세라믹	87.9	95.6	100	98.4	74.8
	기타 산업바이오 세라믹	75.0	90.8	100	88.5	71.3
	바이오소재 종합	83.1	97.6	100	93.7	72.5
	도자기·타일·벽돌·내화물	93.1	98.4	92.7	100	86.4
	<u>시멘트·콘크리트</u>	<u>87.1</u>	100	96.2	99.2	76.8
전통세라믹	<u>유리·법랑</u>	<u>87.0</u>	100	96.6	95.6	88.8
	<u>생활세라믹 소재 공정</u>	86.5	100	91.2	98.3	75.8
	전통세라믹 종합	88.4	100	95.4	98.5	82.5

* 밑줄 : 한국 분야별 종합 기술수준 이하인 세부분야

3. 세라믹 기술 로드맵 현황

가. 소재·부품 R&D 전략(로드맵)

- □ '4차 소재·부품발전 기본계획'의 구체화와 소재·부품기술개발 사업 수행을 위한 Top-Down 전략 수립을 목적으로 해당 로드맵이 도출됨32)
 - O 4차 산업혁명 대응과 주력 산업 고도화를 위한 100대 첨단 소재·부품 기술에 대해 세부적인 계획 구축 및 구체화를 목표로 산업통상자원부가 로드맵을 도출함
 - O 소재·부품 핵심기술 선정 및 해당 기술 적용 소재·부품을 도출하고, 관련된 미래 수요산업 및 모듈의 도출을 통해 로드맵을 도출함
 - O 로드맵은 금속소재, 화합물, 고무/플라스틱, 섬유제품, 세라믹 소재, 전자부품, 수송부품, 일반기계부품, 전기기기부품, 조립금속제품, 정밀기기부품 등과 관련된 기술을 포함하고 있음
- □ 100대 첨단 소재·부품 기술 중 세라믹 기술은 12개로 구조 세라믹, 바이오 세라믹, 에너지 세라믹, 전자 세라믹, 산업용 유리 등과 관련된 기술을 포함하고 있음
 - 구조 세라믹은 초내열 세라믹 섬유 생산과 관련된 기술을 포함함
 - O 바이오 세라믹은 생체 안전성 관련 소재 기술을 포함함
 - O 에너지 세라믹은 열전 발전과 관련된 세라믹 소재 기술을 포함함
 - 전자 세라믹은 에너지 변환 및 안정적인 성질을 가진 소재에 대한 기술을 포함함
 - 산업용 유리는 친환경 기능성 소재에 대한 기술을 포함함
- □ 로드맵은 세라믹의 고내열성, 안정성 등을 활용한 세라믹 섬유·복합소재 관련 기술을 포함하고 있음
 - O 세라믹의 고내열성을 활용한 세라믹 섬유 방사 기술, 고안정성 복합소재 기술 등을 포함함

^{32) 2017} 소재·부품 R&D 전략 로드맵(산업통상자원부, 한국산업기술평가관리원)

[그림 51] 소재·부품 R&D 전략(로드맵)

나. 중소기업 기술로드맵 - 금속 및 세라믹 소재

- □ 중소기업 기술로드맵은 중소기업의 기술역량 강화를 위해 유망기술을 제시하고 이를 통해 중소기업의 새로운 먹거리를 발굴하도록 지원하는 것을 목적으로 함33)
 - O 중소벤처기업부는 유망한 신성장 아이템 제시 및 이를 통한 중소기업 미래 먹거리 발굴을 지원하기 위해 중소기업 기술로드맵을 발행함
 - O 중소기업 현황에 기반 한 R&D 전략 제시를 위해 단기간(3년) 상용화 가능한 기술을 명시함
 - O 2018년 중소기업 기술로드맵은 4차 산업혁명 대응 기술 및 중소기업 성장기반 기술과 관련된 28개 분야에 대해 로드맵을 제시하고 있음
 - 4차 산업혁명 관련 분야는 AI·빅데이터, 5G, 정보보호, 지능형센서, AR/VR, 스마트 가전 등과 관련된 기술을 포함함
 - 중소기업 성장기반 관련 분야는 디지털콘텐츠디자인, 컴퓨팅인프라, 임베디드SW, 금속 및 세라믹소재, 화학 및 섬유소재, 생산기반 등과 관련된 기술을 포함함
- □ 로드맵이 다루고 있는 세라믹 소재는 광·전자 세라믹, 기계·구조 세라믹, 에너지·환경 세라믹, 바이오 세라믹, 차세대 유리 등임
 - O 광·전자 세라믹 소재 관련 기술은 고성능 세라믹스 코팅 기술, 박막·후막 제조 공정 기술 등을 포함하고 있음
 - 기계·구조 세라믹 소재 관련 기술은 고내열성·고경도·내마모성 향상 기술 등을 포함하고 있음
 - O 에너지·환경 세라믹은 다공성 소재 제조 기술 등을 포함하고 있음
 - O 바이오 세라믹은 생체 적합성·활성 복합 소재 제조 기술 등을 포함하고 있음
 - 차세대 유리는 세라믹 표면처리, 코팅 관련 기술 등을 포함하고 있음

³³⁾ 중소기업 기술로드맵 2018-2020(중소벤처기업부, 중소기업기술정보진흥원)

- □ 로드맵은 세라믹 코팅 및 표면 처리 관련 기술을 다수 포함하고 있으며, 세라믹 섬유·복합재료 관련 기술이 주를 이름
 - O 세라믹의 내식성, 내마모성 등을 활용한 코팅 및 표면 처리 관련 기술이 다양한 분야의 세라믹 소재 기술에 포함되어 있음
 - O 세라믹의 안정성, 내열성 등을 활용한 세라믹 섬유 및 복합소재 제조 기술이 다양한 분야의 세라믹 소재 기술에 포함되어 있음

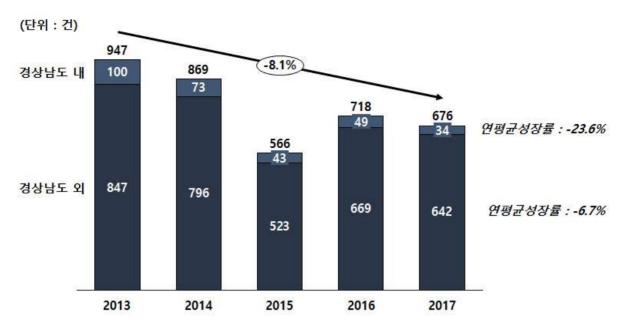


[그림 52] 중소기업 기술로드맵

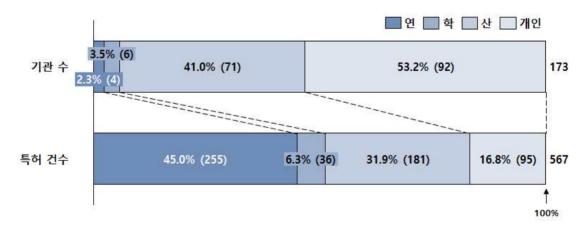
4. 세라믹 분야 기술개발 현황

가. 세라믹 분야 특허 현황

- □ 국내 세라믹 분야 전체 특허 중 경상남도가 차지하는 비중이 높으나, 최근 특허등록 건수가 타 지역 대비 큰 폭으로 감소하고 있음³⁴)
 - O 국내 세라믹 분야 전체 등록특허 중 경상남도 내 출원인이 보유한 특허 비중은 8.2% 수준임
 - O 경상남도 外 출원인의 특허 등록 건수는 최근 5년간 연평균 6.7% 감소한 반면 경상남도 내 출원인의 특허 등록 건수는 동기간 동안 연평균 23.6% 감소함


[그림 53] 국내 세라믹 특허 출원 기관 소재지별 등록특허 건수 및 비중

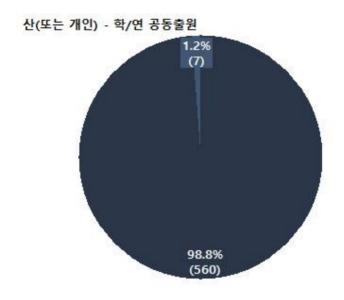
⁻ IPC 분류 기준 'CO4'(시멘트; 콘크리트; 인조석; 세라믹스; 내화물) 해당하는 한국 등록특허 중 국내 출원인의 '권리있음' 상태 특허 대상


- 128 -

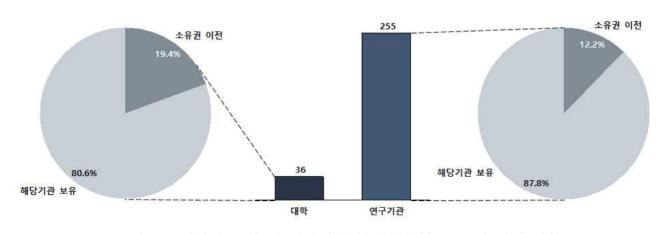
³⁴⁾ Wisdomain DB 바탕으로 ㈜날리지웍스 분석

[그림 54] 국내 세라믹 특허 출원 기관 소재지별 등록특허 건수(등록년도 기준)

- □ 경상남도 내 4개 연구기관이 경상남도 전체 등록특허의 45%를 출원함35)
 - O 세라믹 분야 특허를 출원 · 등록한 기관(개인포함) 중 경상남도에 소재한 기관은 총 172개이며, 이 중 개인·산·학·연 유형별로 구분할 때 연구기관은 4개(2.3%)로 가장 적음
 - O 경상남도에 소재한 기관에서 출원한 세라믹 분야 특허(등록특허)는 총 567건이며, 이중 연구기관 의 등록특허 건수 비중은 45%로 가장 높음³⁶)



[그림 55] 경상남도 세라믹 특허 출원 기관 유형별 비중 및 기관 유형별 등록특허 비중


³⁵⁾ Wisdomain DB 바탕으로 ㈜날리지웍스 분석

⁻ IPC 분류 기준 'C04'(시멘트; 콘크리트; 인조석; 세라믹스; 내화물) 해당하는 한국 등록특허 중 국내 출원인의 '권리있음' 상태 특허 대상 36) 산(또는 개인)-학, 산(또는 개인)-연 공동 출원 특허의 경우 산(또는 개인) 출원 특허로 구분

- □ 경상남도 내 대학 및 연구기관과 기업과의 협력(공동출원, 기술이전)은 활발하지 않은 것으로 파악됨37)
 - O 경상남도 소재 기관이 출원한 세라믹 분야 특허(등록특허) 중 도내 기업(개인 포함)과 도내 대학 또는 연구기관과 공동 출원한 특허의 비중은 7%에 그침
 - O 경상남도 소재 대학 및 연구기관이 출원한 세라믹 분야 특허 중 소유권이 이전된 특허의 비중은 각각 19.4%, 12.2% 수준에 그침

[그림 56] 경상남도 세라믹 특허(등록특허) 중 산-학/연 공동출원 비중 및 건수

[그림 57] 경상남도 학/연 세라믹 특허(등록특허) 소유권 이전 현황

⁻ IPC 분류 기준 'CO4'(시멘트; 콘크리트; 인조석; 세라믹스; 내화물) 해당하는 한국 등록특허 중 국내 출원인의 '권리있음' 상태 특허 대상



- 130 -

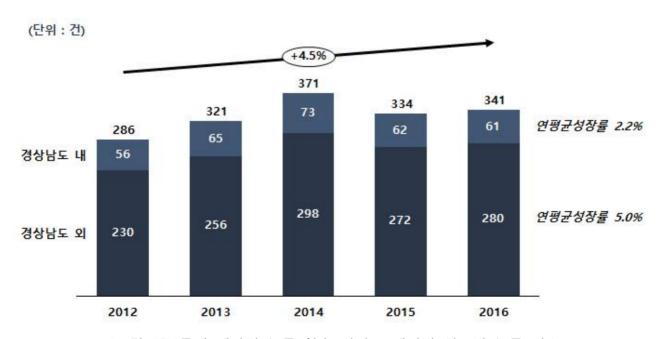
³⁷⁾ Wisdomain DB 바탕으로 ㈜날리지웍스 분석

나. 세라믹 분야 논문 현황

- □ 국내 세라믹 분야 SCI 논문 중 경상남도 소재 기관이 창출한 논문의 비중이 높으나, 타 지역 기관 대비 논문창출 건수의 증가율은 부족한 상황임38)
 - O 최근 5년(2012년 ~ 2016년)동안 창출된 국내 세라믹 분야 SCI 논문 중 경상남도 소재 기관이 창출한 논문 비중은 19.2%에 달함³⁹⁾
 - O 최근 5년(2012년 ~ 2016년)동안의 세라믹 분야 SCI 논문 건수 기준으로, 국내 상위 10개 기관 중 3개 기관이 경상남도 내 기관으로 파악됨⁴⁰⁾
 - 재료연구소는 창출 건수 기준 국내 4위로(107건) 경상남도 內 기관 중 가장 많은 세라믹 분야 SCI 논문을 창출함
 - 한국세라믹기술원은 창출 건수 기준 국내 5위로(102건) 경상남도 內 기관 중 재료연구소에 이어 두 번째로 많은 세라믹 분야 SCI 논문을 창출함
 - 창원대학교는 창출 건수 기준 국내 9위로(94건) 경상남도 內 대학 중 가장 많은 세라믹 분야 SCI 논문을 창출함

[그림 58] 국내 세라믹 논문 창출 기관 소재지별 논문 건수 및 비중(2012~2016)

³⁸⁾ Thomson Innovation Journal Citation Report, 'Materials Science - Ceramics' 분류에 속한 26개 저널에 수록된 논문 대상으로 ㈜날리지웍스 분석

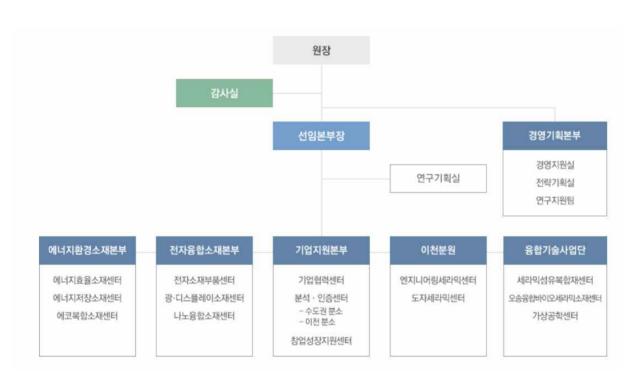

³⁹⁾ 경상남도 소재 기관에 소속된 저자가 1명 이상 포함된 논문을 대상으로 함

⁴⁰⁾ 해당 기관에 소속된 저자가 1명 이상 포함된 논문을 해당 기관 논문으로 산정함

O 최근 5년(2012년 ~ 2016년)동안의 경상남도 內 기관의 세라믹 분야 SCI 논문 창출 건수는 연평균 2.2% 증가한 반면, 경상남도 外 기관은 연평균 5.0% 증가해 경상남도 內 기관의 논문 창출 증가추세가 상대적으로 둔화되어 있음

[표 33] 국내 세라믹 논문 창출 건수 상위 10대 기관(2012~2016)

순위	기관명	논문 건수	비고
1	과학기술연합대학원대학교(UST)	207	
2	전북대학교	129	
3	한양대학교	112	
4	재료연구소	107	경상남도 소재 기관
5	한국세라믹기술원	102	경상남도 소재 기관
6	서울대학교	101	
7	고려대학교	99	
8	영남대학교	99	
9	창원대학교	94	경상남도 소재 기관
10	전남대학교	82	



[그림 59] 국내 세라믹 논문 창출 기관 소재지별 연도별 논문 건수

다. 경상남도 세라믹 주요기관 현황

(1) 한국세라믹기술원

- □ 한국세라믹기술원 본원은 경상남도 진주에 소재하고 있으며, 세라믹 연구개발, 시험·분석·평가, 기술지원 및 정책지원 등을 통해 세라믹산업 경쟁력 제고에 기여하는 정부출연기관임
 - O 한국세라믹기술원은 다음과 같은 기능을 수행함
 - 세라믹 및 세라믹 관련 연구개발 사업
 - 시험·분석, 평가·인증, 감정, 표준화 사업
 - 기술지원을 위한 인프라 구축, 인력양성, 기술지도 사업
 - 세라믹 관련 각종 조사, 분석, 기획 등 정책지원 사업

[그림 60] 한국세라믹기술원 조직도

- O 한국세라믹기술원 본원은 경상남도 진주시에 소재하고 있으며, 이천분원, 오송융합바이오소재센터 등을 보유하고 있음
 - 본원은 에너지환경소재, 전자융합소재, 세라믹섬유복합재 등에 대한 연구를 주로 수행하고 있으며 세부 연구내용은 다음과 같음

[표 34] 한국세라믹기술원 세부 연구 분야

부서	연구내용
에너지환경소재본부	 에너지소재, 환경재료, 건설재료, 복합재료 및 제품 등의 소재, 부품, 이들 응용 제품, 기술에 관한 연구 에너지발전·변환소재, 에너지저장소재, 에너지효율향상소재 및 기능재료 관련 소재.공정.부품 및 관련 제품에 관한 연구 에너지, 친환경, 화학공정, 전자, 반도체, 건설·건축 관련 기능성 분말, 졸, 슬러리, 코팅제, 유기-무기복합소재, 경량·다공소재, 차열·방열소재, 단열재, 연마재, 촉매·흡착제, 시멘트·콘크리트 및 관련제품에 관한 연구
전자융합소재본부	 전자융합 분야의 세라믹 소재 및 부품, 모듈과 이들 응용 제품 및 공정, 시스템화 기술에 관한 연구 다양한 전자 세라믹 소재 및 이를 이용한 전자 부품, 이들 관련 제품 및 기술에 관한 연구 유리, 디스플레이, LED, 광 응용 소재, 부품 및 전자디바이스(센서, 액츄에이터) 응용 융합기술 및 모듈, 시스템화에 관한 연구 나노소재, 융합소재, 세라믹 부품화 공정, 나노융합 디바이스, 나노소재와 융합소재의 전자, 에너지 등 응용부품 분야의 제품개발, 기술개발, 기술 지원에 관한 연구
세라믹섬유복합재센터	■ 세라믹섬유와 복합재의 제조와 응용에 관한 연구

O 한국세라믹기술원 전체 인력규모는 157명 수준이며41), 본원에 소재한 주요 연구 분야별 인력은 다음과 같음

[표 35] 한국세라믹기술원 주요 연구 분야 인력규모

부서	인력규모(명) ⁴²⁾
에너지환경소재본부	22
전자융합소재본부	24
세라믹섬유복합재센터	9

⁴¹⁾ ALIO 공공기관 경영정보 공개시스템, 2018년 1분기 기준

⁴²⁾ 한국세라믹기술원 홈페이지 연구인력정보, 2018년 7월 기준

(2) 재료연구소

- □ 재료연구소는 경상남도 창원시에 소재하고 있으며, 소재기술과 관련된 분야의 기술혁신을 선도하고 산업발전에 기여하는 정부출연연구기관임
 - 재료연구소는 금속 · 세라믹 · 표면 · 융복합 소재 및 공정연구, 소재부품 시험평가 및 기술지원을 수행하고 있음

[그림 61] 재료연구소 조직도

- O 재료연구소 내 세라믹 관련 연구는 엔지니어링세라믹, 기능세라믹, 기능분말, 3D프린팅소재 등과 관련된 연구가 진행되고 있음
 - 세부 연구 내용은 다음과 같음

[표 36] 재료연구소 세라믹 관련 세부 연구 분야

부서	연구내용
기능분말연구	■ 비희토류 Meso-scale 자성입자 제조 신공정 및 벌크화기술 개발 ■ 양자점 연속합성 및 응용기술 개발 ■ 열전도성 유무기 복합 열계면소재 ■ 비희토류 Fe 계 자석소재 제조공정 기술개발 ■ 열플라즈마에 의한 나노분말 제조 및 탄소피막 형성기술 개발 ■ 희토류 저감/대체 영구자석 소재 개발 ■ 결정배향 압전 세라믹스 개발
엔지니어링세라믹연구	■ 고강도/고인성/내마모/저비용 비산화물 세라믹 소재 기술 ■ 방탄/IR윈도우 및 레이저발진용 투명 세라믹 소재 기술 ■ 수처리용 친환경 다공성 세라믹 소재 기술 ■ 생체환경 맞춤형 기능성 골이식재 제조공정 개발 ■ 세라믹 3D프린팅 소재·공정·시스템 전주기 기술 개발
기능세라믹연구	 고출력 전자부품소자의 신뢰성 향상을 위한 미래형 열관리 융복합 방열소재 기술 자동차 부품 에너지 효율 향상을 위한 다공성 세라믹 단열코팅 기술 에너지 하베스팅 소자 및 압전소재, 고감도 자기센서용 자기-전기 소재 및 응용기술 압전 센서용 친환경 압전 단결정 성장 기술 고신뢰성 금속지지형 고체산화물 연료전지 단위셀 제조 기술 열전/전기열량/자기열량효과를 응용한 차세대 냉각기술 및 고효율 에너지 소재 기술
3D프린팅소재연구	■ 3차원 구조체 분말/세라믹 융합 공정기술 ■ 분말/세라믹 기반 부품화 신공정기술 ■ 극한 환경용 세라믹 소재 공정기술 ■ 고강도/고인성 소재 및 초고온 세라믹 소재 개발 ■ 극한 환경용 섬유강화 복합 세라믹 재료 개발

O 재료연구소 세라믹 관련 연구 분야별 인력 규모는 다음과 같음43)

[표 37] 재료연구소 세라믹 연구 분야별 인력규모

부서	인력규모(명)
기능분말 연구	11
엔지니어링세라믹 연구	10
기능세라믹 연구	11
3D프린팅소재 연구	5
세라믹코팅 연구	20
세라믹복합소재 연구	15

⁴³⁾ 재료연구소 본부별 연구인력정보, 2018년 8월 기준

(3) 한국전기연구원

- □ 한국전기연구원은 경상남도 창원시에 소재하고 있으며, 전력사업, 전기공업 및 전기이용 분야의 기술 혁신과 산업 발전에 기여하는 정부출연연구기관임
 - O 한국전기연구원은 전력 IT 및 신재생에너지, 전기기기, 전기부품·소재, 전기의료기기 및 전기 융합 기술 관련 연구와 전기기기 시험·인증 등을 수행함

[그림 62] 한국전기연구원 조직도

○ 한국전기연구원 내 세라믹 관련 연구는 전지, 절연재료, 열전소재, 나노융합소재 등의 분야에서 이루어지고 있으며 세부 연구 내용은 다음과 같음

[표 38] 한국전기연구원 세라믹 관련 세부 연구 분야

부서	연구내용		
	핵심소재 개발: 리튬이차전지, 슈퍼캐패시터 및 금속공기전지 용 소재 리튬전지시스템 개발: 전고상 이차전지		
전지	- 디뮴전시시드림 개발 : ■ 비(非)리튬계 전지시스템 개발 :		
연구센터	- 비(新)다큠계 현지시프럼 게글 · 나트륨이차전지, 슈퍼캐패시터, 금속공기전지, 강유전체 세라믹 커패시터		
	■ 이차전지 활용기술 개발 : 평가기반, 국제표준		
	■ 고순도 세라믹졸 합성		
	■ 경화성수지 세라믹졸 하이브리드 절연코팅 재료		
	■ 전기전자기기용 하이브리드 방열소재(삭제)		
절연재료	■ 모터 및 변압기용 나노하이브리드 절연코팅 재료		
연구센터	■ 전력기기 및 변압기용 나노복합 절연재료		
■ 고전압 절연재료			
	■ 유기필름 보호용 하이브리드 소재		
	■ 절연재료 공정기술 및 특성평가기술		
	■ 양자전산모사 활용 신 열전소재 설계 및 물성 해석 기술 / 수송물성 전산모사 기술		
	■ 균일, 대량 열전 나노입자 제조 기술		
	■ 고효율, 고신뢰성 열전소자 제작 기술		
	■ 마이크로 열전소자 제작 기술		
전기변환소자	■ 열전소재 및 소자 물성 측정 표준화 기술 / 열전물성 측정 장비 제작 기술		
연구센터	■ 산업폐열 및 자동차 배폐열 활용 열전발전시스템 기술		
	■ 전기에너지 변환 소재 및 시스템 개발 :		
	압전소재 및 소자, 에너지 하베스팅 소재/디바이스, 압전 액추에이터		
	■ 전도성섬유 제조기술 및 직물형 웨어러블소자 응용기술		
	■ 섬유직조형 고유연성 염료감응 태양전지		
	■ 탄소나노튜브 및 그래핀 융합소재 제조기술		
	■ 탄소나노소재/금속 하이브리드 고전도성 소재기술		
나노융합기술	■ 유연전극의 웨어러블 소자 응용기술		
│			
	■ 나노소재의 전자기파(마이크로파, 광) 나노가열 응용기술		
	■ 다중소재 3D 프린팅 기술		
	■ AR(비반사)/초발수 표면 대량생산용 임프린트기술		

O 한국전기연구원 내 세라믹 관련 연구 인력 규모는 다음과 같음

[표 39] 한국전기연구원 연구 분야별 인력규모

부서	인력규모(명) ⁴⁴⁾
전지연구센터	15
절연재료연구센터	7
전기변환소자연구센터	14
나노융합기술연구센터	14

(4) 국립창원대학교

- □ 국립창원대학교는 경상남도 창원시에 소재한 대학으로, 신소재융합공학 전공이 개설되어 있으며, 세라믹물성, 세라믹박막, 기능성나노구조, 전기재료 등에 대한 연구를 수행하고 있음
 - O 국립창원대학교 신소재융합공학전공은 재료관련 엔지니어로의 기초지식 함양 및 부품소재산업을 선도할 수 있는 연구역량의 지역화/세계화를 목표로 운영되고 있음
 - O 신소재융합공학전공 내 세부 연구 분야는 다음과 같음

[표 40] 국립창원대학교 신소재융합공학전공 세부 연구 분야

실험실명	연구내용
세라믹물성실험실	 반도성 전이금속 산화물 반도체에서 내부결함 및 확산 메커니즘 이차연료전지 올리빈재료 연구 산소센서 소재 개발 친환경 압전 세라믹재료 개발
기능성나노구조실험실	■ 발전용 가스터빈 열차폐 코팅기술 개발 ■ 정밀 주조용 세라믹 mold 연구 ■ in-situ 복합체의 제조 및 특성 평가 ■ 나노구조 SiC 제조 및 평가
세라믹박막실험실	■ 기억 소자 응용을 위한 유전박막제조 ■ 강유전 스위칭 및 상전이 현상 ■ 친환경 압전재료
전자재료실험실	 투명전도성 산화물 박막/나노구조체 제작 친환경 고체 자기냉동재료 개발 전해 플라즈마 공정을 이용한 경량합금 표면개질기술 개발 금속분말 사출성형기술 개발
나노재료실험실	고온재료/내화물 나노 세라믹/금속 분말합성 및 성형공정 나노 세라믹 코팅재 합성 및 멤브레인 제조 환경 정화동 촉매 담체 및 무기/유기 Hybrid 복합재료
에너지재료실험실	고체산화물 연료전지 개발 저온형 연료전지 구성요소 제작 고용량 이차전지 전극재료 개발 전기화학 소자의 열화 메커니즘 분석
전자세라믹현상학실험실	 전자세라믹스의 결함화학과 그에 따른 현상학 세라믹 및 반도체 화합물을 이용한 열전 소재 및 모듈 커패시터 및 에너지 저장 유전재료 개발 열전/압전을 이용한 에너지 하베스팅

⁴⁴⁾ 한국전기연구원 홈페이지 조직별 연구인력정보, 2018년 7월 기준

○ 국립창원대학교 신소재융합공학전공 구성 교원 및 학생은 총 469명 규모로 세부 구성은 다음과 같음45)

[표 41] 국립창원대학교 신소재융합공학전공 구성 인력

구분	인원(명)
교원	26
대학원생	62
학부생	381

⁴⁵⁾ 대학알리미, 교육부, 2017년 재적학생 기준

(5) 국립경상대학교

- □ 국립경상대학교는 경상남도 진주에 소재한 4년제 대학으로, 나노·신소재공학 전공이 개설되어있으며, 세부전공으로는 고분자공학, 금속재료공학, 세라믹공학으로 구성되어 있음
 - 세라믹공학전공은 첨단 소재 개발과 생산에 요구되는 융합 공학교육 환경제공 및 소재 연구개발 단계 실습을 통한 산학협력 실무 능력을 배양하고 세라믹 공학 분야 인재 양성을 목표로 함
 - 세라믹공학전공은 세라믹센서, 에너지환경세라믹스, 신기능세라믹 등에 대한 연구를 수행 중에 있으며 세부 내용은 다음과 같음

[표 42] 국립경상대학교 세라믹공학전공 세부 연구 분야

[표 42] 독립성영대학교 제다락증학신증 제구 원구 군아 		
실험실명	연구내용	
세라믹디자인연구실	■ 세라믹스의 구조와 물성에 대한 컴퓨터 시뮬레이션	
	■ Rietueld법에 의한 결정구조 분석	
	■ 고체 전해질의 개발	
	■ Al2O3/ZrO2 나노소결	
내화재료연구실	■ 아파타이트계 세라믹 임플란트의 열화현상 규명	
니와세표한구글 	■ 폐건축물 자원의 재활용	
	내화물	
	Zinc Oxide varistor	
전자기특성 전자기특성	Powder preparation by chemical methods	
[전작기국영 	Powder preparation for Li ion secondary battery	
	Cathode material for fuel cell	
	Microstructure Characterization	
실 결정학 및 단결정연구실	Controled microstructure development	
	Ceramic fiber and fabrics development and its applications	
	Core-Shell structured MgB2 High-Tc Superconductor	
	Ferroelectric Nano Tube (FNT)	
세라믹센서연구실	Ferroelectiric Thin Film Application	
에너 국민자 한 F 글	Tunable Micro wave Device	
	Ferroelectric Phase shifters for Application	
에너지환경세라믹스연구실	Ionic transport and Electrochemical polarization on	
	Sodium Beta alumina Batteries (NBBs)	
	Solid Oxide Fuel Cells (SOFCs) / Solid Oxide Electrolysis Cells (SOECs)	
	Oxygen Transport Membranes (OTMs)	
│ 신기능세라믹연구실	■ 세라믹 소결현상	
전기중세다락한구글 	■ 미세구조 제어	

○ 국립경상대학교 나노·신소재공학전공 구성 교원 및 학생은 총 470명 규모로 세부 구성은 다음과 같음46)

[표 43] 국립경상대학교 나노·신소재공학전공 구성 인력

구분	인원(명)
교원	40
대학원생	92
학부생	338

⁴⁶⁾ 대학알리미, 교육부, 2017년 재적학생 기준

(6) 경남대학교

- □ 경남대학교는 경상남도 창원시에 소재한 4년제 대학으로, 나노신소재공학 전공이 개설되어있으며, 신소재 및 나노소재분야의 전문 인재를 양성하는 것을 목표로 함
 - 경남대학교 나노신소재공학전공은 세라믹, 고분자, 금속의 구성과 특성을 이해하고 이를 바탕으로 전자소자, 나노소재, 친환경에너지 등의 분야에 전문성을 확보할 수 있도록 함
 - O 나노신소재공학전공 내 세부 연구 분야는 다음과 같음

[표 44] 경남대학교 나노신소재공학전공 세부 연구 분야

실험실명	연구내용
나노계측설계실험실	바이오 세라믹스
나노특성평가실험실	세라믹코팅, 전자현미경
나노소자설계실험실	전자재료, 나노자성재료
나노기기분석실험실	분광학, 분석화학
나노물질실험실	나노분체제조, 나노복합재료

○ 경남대학교 나노신소재공학전공 구성 교원 및 학생은 총 237명 규모로 세부 구성은 다음과 같음⁴7)

[표 45] 경남대학교 나노신소재공학전공 구성 인력

구분	인원(명)
교원	9
대학원생	12
학부생	216

⁴⁷⁾ 대학알리미, 교육부, 2017년 재적학생 기준

(7) 국립부산대학교(밀양)

- □ 국립부산대학교 밀양캠퍼스는 경상남도 밀양시에 소재하고 있으며, 대학원 나노융합기술학과가 개설되어있고, 나노소재, 나노메카트로닉스, 나노바이오 등에 대한 연구를 수행하고 있음
 - 국립부산대학교 나노융합기술학과는 나노과학, 나노공학과 다양한 과학기술 분야와의 융합을 통해 국가 신성장동력 신기술 창출을 위한 연구를 수행하고 있음
 - O 나노융합기술학과 내 세부 연구 분야는 다음과 같음

[표 46] 국립부산대학교(밀양) 나노융합기술학과 세부 연구 분야

연구내용	
압전 나노발전	
컴퓨터 시뮬레이션	
리튬이온 배터리	
염료감응형 태양전지	
기능성 바이오소재	
MEMS/NEMS	
유기 태양전지	
Coloimetric 센서	
3차원 통합 시스템(3D Integraion Systems)	

○ 국립부산대학교 나노융합기술학과 구성 교원 및 학생은 총 239명 규모로 세부 구성은 다음과 같음⁴⁸)

[표 47] 부산대학교 나노신소재공학전공 구성 인력

구분	인원(명)
교원	13
대학원생	60
학부생	166

⁴⁸⁾ 대학알리미, 교육부, 2017년 재적학생 기준

5. 소결

- □ 우리나라 전체 제조업 연구개발 투자 증가에도 불구하고 세라믹 연구개발 투자는 감소하고 있으며, 기술수준은 정체되어 있는 실정임
 - 우리나라 세라믹산업 연구개발 투자는 2012년부터 2016년까지 5년간 연평균 10% 수준으로 감소하고 있음
 - O 2017년 기준 우리나라 세라믹 기술수준은 최고 기술수준 보유국인 일본 대비 83.9% 수준이며, 2013년(83.9%)부터 정체되어 있는 상황임
- □ 중앙정부의 세라믹 관련 연구개발 로드맵에서는 세라믹 코팅, 세라믹 섬유·복합재료 관련 계획을 수립하고 있음
 - O 세라믹 코팅 분야와 관련하여 열차폐 및 고내구성 코팅 기술, 세라믹 표면처리 기술 등이 제시되고 있음
 - 세라믹 섬유·복합재료 분야와 관련하여 초내열 세라믹 섬유, 고온용 세라믹 섬유/매트릭스 복합재료 제조기술 등이 제시되고 있음
- □ 경상남도는 연구기관과 대학이 우수한 기술 · 연구역량을 보유하고 있음
 - 경상남도 전체 세라믹 등록특허 중 도내 4개 연구기관이 출원한 특허의 비중이 전체의 45% 수준임
 - O 국내 세라믹 분야 SCI급 논문 창출 건수(최근 5년) 기준 상위 10개 기관 중 3개 기관이 경상남도에 소재하고 있음

V. 세라믹 산업 클러스터 현황

1. 국내 세라믹 산업 클러스터 현황

가. 전라남도

- (1) 지역 산업 정책 현황
 - □ 전라남도는 중장기적으로 지역 산업 및 기술 경쟁력 강화를 위해 신소재 산업을 육성하고 관련 지원을 확대하고자 함⁴⁹)
 - O 전라남도는 지역간·권역간 조화로운 발전을 도모하고 동북아 신신업, 문화, 관광, 물류 거점 실현을 위해 '전라남도종합계획(2012~2020)'을 수립함
 - O 전라남도는 지역 산업 및 기술 경쟁력 강화를 위해 다음과 같은 산업 발전 전략을 수립함
 - 친환경 고소득 농림수산업 육성
 - 미래 전략산업 육성 및 전통산업 구조 고도화
 - 서비스산업 육성
 - O 전라남도는 미래 전략산업 육성하고 전통산업을 구조화함에 있어 주력산업의 경쟁력을 제고 하고 지속적인 성장 기반을 구축하고자 함
 - 전라남도의 주력산업으로는 조선, 철강 및 신소재, 석유화학 산업이 있음
 - O 전라남도는 철강 및 신소재 산업 육성을 위해 다음과 같은 전략을 수립함
 - 나노기술을 통한 소재개발사업 육성 등 생산구조 고도화
 - 철강산업 및 전통소재산업, 신산업 등과 신소재·부품산업의 융·복합화
 - 파인세라믹스, 신금속 및 고분자 신소재부문의 혁신거점으로 부상
 - 핵심 부품 소재산업의 국내 공급기지화 달성

⁴⁹⁾ 제 3차 전라남도종합계획 수정계획 2012~2020, 전라남도, 2012.02.

- □ 전라남도는 지역 주력산업 고부가가치화와 지역 중소기업 경쟁력 강화를 위해 전략을 수립하고 주요 산업을 지원함50)
 - O 전라남도는 지역산업 발전을 위해 '2018년 지역산업진흥계획'을 수립하고 이를 통해 지역 주력산업의 고부가가치화와 지역 주요산업 경쟁력 강화를 도모하고자 함
 - 전라남도는 석유화학기반 고분자소재산업을 주요산업으로 육성하고 있으며 전라남도 경제협력권산업육성사업 주관산업인 첨단신소재·부품산업과 연계하여 소재분야를 육성하고 있음
 - 금속/고분자/세라믹분야 고기능·친환경·차세대 소재·부품 개발 과제를 통해 첨단신소재·부품산업 전후방 기업을 지원함
 - 특히 첨단 경량소재·부품, 고부가가치 고분자소재·부품, 고기능성 세라믹소재·부품 분야에 특화해 지원함
- □ 전라남도는 활기 있는 지역 경제를 위해 일자리를 창출하고 지역 산업 경쟁력을 제고하고자함⁵¹⁾
 - O 2018년 전라남도업무계획은 연간 도정계획을 수립하고 세부 시책을 도출한 정책으로 지역 산업 육성 관련 내용을 포함하고 있음
 - O 전라남도는 좋은 일자리를 창출하고 지역산업 경쟁력 제고를 위해 4차 산업혁명 선도 미래 신산업을 육성하고자 하며 세부지원 내용은 다음과 같음
 - 에너지 신산업 성장기반 확충 및 연구역량 강화
 - 생물·의약·항공·드론 등 미래 유망산업 육성
 - 신재생에너지 보급 확대 및 인프라 확충
 - 미래 유망산업에는 세라믹 소재 산업이 포함되어 있으며, 해당분야를 고부가가치 첨단 소재산업으로 발전시키기 위해 생태계 조성 및 소재 산업화 지원 사업을 추진 함
 - 첨단 세라믹산업 육성을 위한 생태계 조성('18년 48억원)

^{51) 2018} 주요업무계획, 전라남도, 2018

^{50) 2018}년도 지역산업진흥계획, 전라남도, 2017.12.

(2) 세라믹 관련 혁신기관 현황

- □ 전남테크노파크 세라믹산업종합지원센터는 전라남도 지역 원료분말 산업 연계성을 바탕으로 전라남도 목포시에 2009년 구축된 세라믹 산업 육성을 위한 클러스터임
 - O 전남테크노파크 세라믹산업종합지원센터는 한국알루미나, CIS 등 전라남도 지역 첨단 세라믹 원료 분말 생산기업의 설립과 함께 세라믹 산업 육성을 위해 설립된 기관임
 - 세라믹산업 연관기업 발굴·유치·육성, 세라믹산업 기업지원 기반조성 및 운영, 전주기 비즈니스 종합지원서비스, 특화된 전문인력양성 등을 목표로 운영되고 있음
 - 10년간 센터 구축 및 운영에 투입된 사업비는 486.7억 원 규모임(2007~2016)
 - O 세라믹산업종합지원센터는 파일럿 생산장비, 분석장비 등을 보유한 센터 외에 입주기업동, 시험제작동 및 배후 산업단지를 확보함
 - 대지 14,876㎡, 건물 5,376㎡ 규모로 건물은 센터본관동, 입주기업동, 시험제작동이 있으며, 배후 산업단지와의 연계를 통해 센터 입주기업의 성장을 지원함
 - 전남테크노파크 세라믹산업종합지원센터는 세라믹 소재·부품 생산 전 공정에 필요한 장비를 보유하고 있음52)

⁵²⁾ 세라믹 산업종합지원센터 장비 구성, 전남테크노파크

[표 48] 전남테크노파크 세라믹산업종합지원센터 인프라 현황

	센터본관동				
JACC	규모	(연면적) 1,658m² (건축면적) 883m²			
	용도	행정실, 연구실, 회의실, 세미나실, 공용실험실, 분석실, 정보자료실			
		입주기업동			
	규모	(연면적) 1,718㎡ (건축면적) 601㎡			
Sense	용도	보육공간(60㎡(18평)x18실)			
	시험제작동				
IN THE ROLL NAMES AND POST OF THE PARTY OF T	규모	(연면적) 2,444m² (건축면적) 2,444m²			
EN THE SEC STATES THE TAX THE SECOND TO	용도	첨단구조세라믹 부품소재 일괄 시험제작라인 구축			
	사업화지원동				
ARSTA BE	규모	(연면적-시험제작라인)1,525㎡ (연면적-사업화전용공간)1,450㎡			
	용도	첨단세라믹 원료 처리 일괄 시험 제작라인 구축 중소벤처기업 사업화전용공간			

원료(분말)합성	원료(분말)처리	성형	열처리 (탈지/소결)	가공/코팅	시험·평가
건식합성	분쇄/혼합/분산	가압성형	탈지(탈바인더)	기계가공(성형체)	■ 3차원측정기
■ 플라즈마 합성장비 ■ 탄화반응로 ■ 수소분위기환원로	■ 볼밀 ■ 미드밀 ■ 제트밀 ■ 유성밀 ■ 나노분산기 등	■ 대형분말성형프레스 ■ 중소형분말프레스 ■ 냉간등방압성형기 ■ 기계식분말프레스	■ 대형분위기탈지로 ■ 중형분위기탈지로	■ 정밀복합그린가공기 ■ 원통정밀그린가공기 ■ 밀링기 ■ 콘타톱머신 ■ 5축복잡형상가공기	 입도분석기 주사전자현미경 고온곡강도 측정기 열중량시차분석기 레이저현미경 세라믹파우더 물성측정기
습식합성	구형화	압출성형	소결/소성	코팅	■ 분산안정성측정기 ■ 고온 XRD
■ 수열합성 반응기 ■ 초임계합성반응기 ■ 초음파분무열분해	 소·중·대형 분무건조기 세라믹볼 구형화 장비 플라즈마 구형화 장비 	■ 세라믹진공압출기	 대형 대기소결로 고온진공소결로 대형 분위기소결로 열처리용 가스로 반응소결로 	■ 열플라즈마스프레이 ■ 탄화규소화학증착기 ■ 화학기상침투기 ■ 파이로카본코팅기	
건조	고순도화	후막성형	가압소결	고순도화	
■ 건조기 ■ 마이크로웨이브 건조기	■ 산세정 표면처리장비 ■ 흑연고순화로	■ 테입성형기 ■ 그린시트적층절단기	■ 고온가압프레스 ■ 가스압소결로(GPS) ■ 초고정수압소결로 ■ 밀도화처리장비	■ 산세정표면처리장비 ■ 흑연고순화로	

[그림 63] 전남테크노파크 세라믹산업종합지원센터 보유장비

O 현재 20여개의 기업이 입주해 있으며, 입주 기업의 주생산품은 알루미나 부품 및 소재, 세라믹 기판, 세라믹기초원료 등이 있음53)

[표 49] 전남테크노파크 세라믹산업종합지원센터 입주기업현황

입주기업명	주생산품
㈜씨에스테크	알루미나 부품 및 소재
드림소재	세라믹기판, 지오폴리머
사이프리온	그라파이트 표면처리
거룡광업소	세라믹기초원료
㈜나노테크	반도체용 특수히터
㈜유기산업	SiC원료
㈜케이엔티글로벌	세라믹기판 및 연마제
마이크로맥스 영농조합법인	수처리환경정화제품
㈜포스포	LED용 형광체 개발
㈜PLUS Manager	Mechanical Seal
한경티이씨(주)	지르코니아 외 금속화합물
존인피니티	세라믹부품소재
코멕스카본	인조흑연 히터
㈜협성다이나믹스	용사코팅분말제조
㈜오토산업	차량용 센서
㈜부영씨앤에스	세라믹 부품 소재 가공
㈜석경에이티	특수나노소재
㈜메카로	반도체 장비부품 및 박막재료
㈜지엔티엔에스	세라믹 연소촉매

⁵³⁾ 전남테크노파크 세라믹산업종합지원센터 입주기업현황, 전남테크노파크, 2018.07.기준

(3) 세라믹 산업 현황

- □ 전라남도 세라믹 기업은 2015년 기준 약 718개로 전국 대비 6.0% 수준임54)
 - O 전라남도 소재 세라믹 기업 중 세라믹 원자재·기초소재 생산업체는 총 238개이며, 세라믹 가공·성형 제품 생산 업체는 총 480개임
- □ 전라남도 세라믹산업 세부분야별 업체 수 및 집적도 검토 결과 '건설용 석재 채굴업', '시멘트 제조업', '레미콘 제조업' 등이 유의미한 분야로 확인됨55)
 - 세라믹 원자재·기초소재 세부분야에서는 '건설용 석재 채굴업', '시멘트 제조업', '레미콘 제조업' 등이 규모(업체 수)와 집적도 측면에서 유의미한 것으로 확인됨56)57)
 - '건설용 석재 채굴업' 분야 업체 수는 13개로 전국 대비 12.3% 수준이며, 집적도 또한 2.7 이상으로 해당 분야의 집적을 확인함
 - '시멘트 제조업' 분야 업체 수는 14개로 전국 대비 15.1% 수준이며, 집적도 또한 3.4 이상으로 높은 수준임
 - '레미콘 제조업' 분야 업체수는 107개로 전국 대비 10.1% 수준이며, 집적도 또한 2.8이상으로 해당 분야의 집적을 확인함
 - O 세라믹 가공·성형 제품 세부분야에서는 규모(업체 수)와 집적도 측면에서 유의미한 기업이 없는 것으로 확인됨
 - '가정용 및 장식용 도자기 제조업'과 '기타 내화요업제품 제조업'은 집적도가 종사자 및 매출액 기준 모두 높은 수준이나 규모 측면에서 업체수 비중이 전국 대비 10% 미만임

^{54) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행 55) 2015 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행

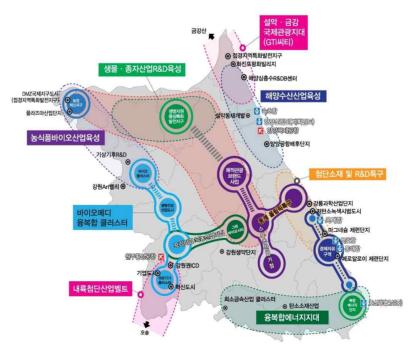
⁵⁶⁾ 업체 수가 10개 이상, 전국 대비 10% 이상의 비중을 차지하면서 집적도 1 이상인 경우 유의미한 것으로 판단함

^{57) &#}x27;경상남도 A 산업 집적도 = 경상남도 A산업 비중/전국 A산업 비중' 의미하며, 집적도 1 이상일 경우 해당 산업이 경상남도에 집적된 것으로 판단함

[표 50] 전라남도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
연 및 아연 광업	-	0.0%	0.00	0.00
그외 기타 비철금속 광업	-	0.0%	0.00	0.00
석회석 광업	1	1.0%	0.07	0.03
고령토 및 기타 점토 광업	5	7.7%	3.24	2.00
건설용 석재 채굴업	<u>13</u>	12.3%	2.79	0.89
모래 및 자갈 채취업	<u>15</u>	5.6%	1.17	0.46
화학용 및 비료원료용 광물 광업	4	25.0%	15.34	6.30
그외 기타 비금속광물 광업	2	5.0%	2.00	0.62
기타 기초무기화학물질 제조업	<u>18</u>	5.3%	<u>3.40</u>	3.00
무기안료 및 기타금속산화물 제조업	2	3.9%	0.69	0.19
질소, 인산 및 칼리질 비료 제조업	7	15.9%	4.14	1.95
요업용 유약 및 관련제품 제조업	2	4.3%	2.57	0.39
시멘트 제조업	<u>14</u>	<u>15.1%</u>	<u>3.43</u>	1.88
석회 및 플라스터 제조업	5	5.5%	2.82	4.45
비내화 모르타르 제조업	7	7.7%	1.89	1.17
레미콘 제조업	107	10.1%	2.83	1.03
플라스터 제품 제조업	4	14.3%	10.61	4.19
섬유시멘트 제품 제조업	1	3.6%	0.83	0.77
연마재 제조업	4	1.4%	0.36	0.05
비금속광물 분쇄물 생산업	<u>12</u>	5.0%	2.62	2.05
석면, 암면 및 유사제품 제조업	4	2.0%	0.55	0.12
기타 분류안된 비금속 광물제품 제조업	<u>11</u>	3.8%	0.66	0.29

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상


[표 51] 전라남도 세라믹 성형·가공 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
판유리 제조업	1	8.3%	0.39	0.03
유리섬유 및 광학용 유리 제조업	-	0.0%	0.00	0.00
판유리 가공품 제조업	<u>26</u>	2.0%	0.49	0.14
기타 산업용 유리제품 제조업	1	0.5%	0.03	0.00
가정용 유리제품 제조업	-	0.0%	0.00	0.00
포장용 유리용기 제조업	-	0.0%	0.00	0.00
그외 기타 유리제품 제조업	1	0.7%	0.08	0.01
가정용 및 장식용 도자기 제조업	105	6.1%	4.49	3.76
위생용 도자기 제조업	4	3.6%	0.24	0.03
산업용 도자기 제조업	9	4.1%	0.83	0.43
기타 일반도자기 제조업	2	2.9%	<u>1.79</u>	0.36
구조용 정형내화제품 제조업	<u>12</u>	9.3%	<u>1.03</u>	0.21
기타 내화요업제품 제조업	8	8.7%	<u>6.63</u>	<u>5.72</u>
점토 벽돌, 블록 및 유사 비내화 요업제품 제조업	<u>15</u>	9.0%	2.04	1.11
타일 및 유사 비내화 요업제품 제조업	2	2.6%	2.25	0.79
기타 구조용 비내화 요업제품 제조업	1	7.7%	0.89	<u>1.37</u>
콘크리트 타일, 기와, 벽돌 및 블록 제조업	87	9.4%	2.98	0.78
기타 구조용 콘크리트제품 제조업	<u>28</u>	4.9%	2.41	0.99
기타 콘크리트 제품 및 유사제품 제조업	-	0.0%	0.00	0.00
건설용 석제품 제조업	131	9.5%	2.16	0.45
기타 석제품 제조업	<u>47</u>	4.9%	1.39	0.57

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상

나. 강원도

- (1) 지역 산업 정책 현황
 - □ 강원도는 중장기적으로 지속성장 가능한 산업기반 형성을 위해 기능성 신소재 산업을 육성하고 관련 지원을 확대하고자 함
 - O 강원도는 도민의 소득 증대와 행복 증대 및 생명·건강 삶터 구축을 위해 '강원도종합계획(2012'2020)'을 수립함
 - O 강원도는 지역 산업혁신을 위해 광역 경제권 선도전략산업을 육성하고, 신소재 산업거점을 조성하는 등의 지원을 확대함
 - 강원도의 선도전략산업은 기능성 신소재 산업, 바이오메디컬 산업, 헬스케어 산업 등이 있으며, 관련 산업 육성을 위해 산업단지 구축, 연구개발 지원 등을 수행함
 - 강원도는 신소재 산업 거점 조성을 위해 마그네슘 산업단지(강릉), 세라믹산업 클러스터(강릉), 비철금속 산업단지(동해), 소방방재특화 산업단지(삼척) 등의 연계 전략을 추진함

[그림 64] 강원도 산업발전 종합구상도

- □ 강원도는 주력산업 고도화를 통한 일자리 창출 확대 및 대표산업 부가가치 증대 등을 위해 전략을 수립하고 웰니스 식품, 세라믹 복합 신소재, 레저 휴양 지식 서비스 등을 지원함58)
 - O 강원도는 지역기업 육성을 위해 '2018년 강원도 지역산업진흥계획'을 수립하고 지역 주력 산업의 고부가가치화와 지역기업육성을 지원함
 - O 강원도는 대표산업 구조 고도화를 통한 4차 산업혁명에 대응하고 서비스 및 제조업 플랫폼 간 연계체계 마련을 통해 지속가능한 신산업 seed를 마련하고자 함
 - O 강원도는 세라믹 복합 신소재 산업에 대해 사업 다각화를 위한 산업간 융복합화를 지원하고 이를 통해 소재·부품 산업의 확대를 도모함
 - 기존 특화 분야인 환경 기능성 소재, 센서 소재, 반도체용 부품 등을 지속적으로 육성하고 지역 내 전략산업인 의료기기·바이오 분야와의 융복합을 통한 생체소재분야의 다각화를 유도하여 고부가가치화를 강화하고자 함

^{58) 2018}년 강원도 지역산업진흥계획, 강원도, 2017.12.

(2) 세라믹 관련 혁신기관 현황

- □ 강원테크노파크 세라믹신소재센터는 지자체 중 처음으로 세라믹 산업 육성을 표방하여 설립된 기관으로 수도권과의 인접성이 강점임
 - 강원테크노파크 세라믹신소재센터는 2000년대 초반 강릉대 파인세라믹센터 및 창업보육센터로부터 발전되어 2005년부터 클러스터 조성사업을 추진함
 - 세라믹 신소재 산업 기반 및 인프라 구축, 기술 사업화 및 생산기술혁신 지원 사업 등을 통한 세라믹 부품 소재 육성을 목표로 운영되고 있음
 - 세라믹신소재센터 구축 및 운영을 위해 8년간 2단계로 사업이 운영되었으며 기반 구축과 산업 육성을 위한 기반 정비 사업으로 구분해 진행됨
 - 1단계 사업은 2005년~2008년까지 진행되었으며, 클러스터 조성 및 운영을 목적으로 250억원 규모로 수행되었음
 - 2단계 사업은 2008년~2012년까지 진행되었으며, 세라믹 부품·소재산업 클러스터 기반정비를 목적으로 117억원 규모로 수행되었음
 - 세라믹신소재센터는 파일럿 생산장비, 분석장비 등이 구축된 센터 외에 벤처 1, 2공장 및 배후 산단을 확보하고 있음⁵⁹)
 - 세라믹신소재센터 입주기업은 67개로 주요생산품목은 반도체용 세라믹 부품, 세라믹 분말, 세라믹 정밀 가공품 등이 있음
 - 세라믹신소재센터 입주기업은 배후 산단 13개 기업을 포함한 규모임

⁵⁹⁾ 강원테크노파크 소개자료, 강원테크노파크

[표 52] 강원테크노파크 세라믹신소재지원센터 인프라 현황

[표 34] 성원대고도파크 제다락인도세시원엔터 인프다 연광					
	세라믹신소재산업화지원센터				
	규모	(연면적) 7,118㎡ (건축면적) 2,784㎡			
	용도	시제품생산동, 회의실(대1, 소2), 전시실, 체력단련실, 이노카페 등			
	장비분야	신소재관련연구 및 시제품생산지원장비			
	대표장비	레이저펀쳐기, 인쇄패턴검사기, 고온분위기소결기, 박막증착기 등 86대			
		SoP Pilot Plant 지원센터			
	규모	(연면적) 1,890㎡ (건축면적) 663㎡			
	용도	공동개방실험실, 회의실, 휴게실 등			
	장비분야	SoP(System on Package)용 부품소재 신뢰성 평가 장비			
	대표장비	전압 및 주파수 측정기, 내습부하시험기 등 12대			
		반도체 세라믹 부재 공장			
	규모	반도체 세라믹 부재 공장 (연면적) 954㎡ (건축면적) 1,014㎡			
	규모용도	(연면적) 954m²			
		(연면적) 954㎡ (건축면적) 1,014㎡			
	용도	(연면적) 954㎡ (건축면적) 1,014㎡ 원료합성실, 성형실, 소성실, 대형가공실 등			
	용도 장비분야	(연면적) 954㎡ (건축면적) 1,014㎡ 원료합성실, 성형실, 소성실, 대형가공실 등 반도체 부자재용 대형 세라믹 시제품 제조장비 디스크형 스프레이드라이어, 수직형			
和 沙地山土ヤコ ジャモ オマヤリ	용도 장비분야	(연면적) 954㎡ (건축면적) 1,014㎡ 원료합성실, 성형실, 소성실, 대형가공실 등 반도체 부자재용 대형 세라믹 시제품 제조장비 디스크형 스프레이드라이어, 수직형 대형머시닝센터, 중전기로, 대형CIP 등 14대			
和 20年1上5日 2 季 利子 智	용도 장비분야 대표장비	(연면적) 954㎡ (건축면적) 1,014㎡ 원료합성실, 성형실, 소성실, 대형가공실 등 반도체 부자재용 대형 세라믹 시제품 제조장비 디스크형 스프레이드라이어, 수직형 대형머시닝센터, 중전기로, 대형CIP 등 14대 강릉벤처공장			
和 20年3上年2日を表示的 THE House States Annual Markets Mark	용도 장비분야 대표장비 규모	(연면적) 954m ² (건축면적) 1,014m ² 원료합성실, 성형실, 소성실, 대형가공실 등 반도체 부자재용 대형 세라믹 시제품 제조장비 디스크형 스프레이드라이어, 수직형 대형머시닝센터, 중전기로, 대형CIP 등 14대 강릉벤처공장 (연면적) 7,118m ² (건축면적) 2,784m ²			

(3) 세라믹 산업 현황

- □ 강원도 세라믹 기업은 2015년 기준 약 627개로 전국 대비 5.3% 수준임60
 - 강원도 소재 세라믹 기업 중 세라믹 원자재·기초소재 생산업체는 총 327개이며, 세라믹 가공·성형 제품 생산 업체는 총 300개임
- □ 강원도 세라믹산업 세부분야별 업체 수 및 집적도 검토 결과 '석회석 광업', '모래 및 자갈 채취업', '시멘트 제조업', '석회 및 플라스터 제조업', '레미콘 제조업' 등이 유의미한 분야로 확인됨61)
 - O 세라믹 원자재·기초소재 세부분야에서는 '석회석 광업', '모래 및 자갈 채취업', '시멘트 제조업', '석회 및 플라스터 제조업', '레미콘 제조업' 등이 규모(업체 수)와 집적도 측면에서 유의미한 것으로 확인됨62)63)
 - '석회석 광업' 분야 업체 수는 48개로 전국 대비 48.5% 수준이며, 집적도 또한 82.6 이상으로 매우 높은 수준임
 - '모래 및 자갈 채취업' 분야 업체 수는 55개로 전국 대비 20.4% 수준이며, 집적도 또한 9.4 이상으로 높은 수준임
 - '시멘트 제조업' 분야 업체 수는 12개로 전국 대비 12.9% 수준이며, 집적도 또한 46.1 이상으로 매우 높은 수준임
 - '석회 및 플라스터 제조업' 분야 업체 수는 18개로 전국 대비 19.8% 수준이여, 집적도 또한 12.7 이상으로 높은 수준임
 - '레미콘 제조업' 분야 업체수는 127개로 전국 대비 12.0% 수준이며, 집적도 또한 5.8 이상으로 높은 수준임

^{63) &#}x27;경상남도 A 산업 집적도 = 경상남도 A산업 비중/전국 A산업 비중' 의미하며, 집적도 1 이상일 경우 해당 산업이 경상남도에 집적된 것으로 판단함

^{60) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행

^{61) 2015} 경제총조사(통계청, 2017) 바탕으로 ㈜날리지웍스 분석, 한국세라믹기술원 협조로 표준산업분류 세세분류 기준 세라믹 산업 분류 수행

⁶²⁾ 업체 수가 10개 이상, 전국 대비 10% 이상의 비중을 차지하면서 집적도 1 이상인 경우 유의미한 것으로 판단함

- O 세라믹 가공·성형 제품 세부분야에서는 규모(업체 수)와 집적도 측면에서 유의미한 기업이 없는 것으로 확인됨
 - '유리섬유 및 광학용 유리 제조업', '산업용 도자기 제조업', '기타 일반도자기 제조업' 등은 집적도가 종사자 및 매출액 기준 모두 높은 수준이나 규모 측면에서 업체 수 비중이 전국 대비 10% 미만임

[표 53] 강원도 세라믹 원자재·기초소재 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
연 및 아연 광업	-	0.0%	0.00	0.00
그외 기타 비철금속 광업	1	10.0%	6.08	30.27
석회석 광업	<u>48</u>	48.5%	<u>45.64</u>	<u>82.65</u>
고령토 및 기타 점토 광업	6	9.2%	<u>12.20</u>	9.05
건설용 석재 채굴업	9	8.5%	<u>9.68</u>	12.37
모래 및 자갈 채취업	<u>55</u>	20.4%	<u>8.56</u>	<u>9.40</u>
화학용 및 비료원료용 광물 광업	2	<u>12.5%</u>	<u>17.47</u>	<u>20.25</u>
그외 기타 비금속광물 광업	6	<u>15.0%</u>	22.09	<u>47.81</u>
기타 기초무기화학물질 제조업	7	2.1%	<u>1.17</u>	<u>1.38</u>
무기안료 및 기타금속산화물 제조업	-	0.0%	0.00	0.00
질소, 인산 및 칼리질 비료 제조업	1	2.3%	0.26	0.05
요업용 유약 및 관련제품 제조업	1	2.1%	<u>6.42</u>	<u>10.85</u>
시멘트 제조업	<u>12</u>	<u>12.9%</u>	<u>31.56</u>	<u>46.11</u>
석회 및 플라스터 제조업	<u>18</u>	<u>19.8%</u>	<u>12.75</u>	<u>12.42</u>
비내화 모르타르 제조업	3	3.3%	<u>3.87</u>	<u>2.49</u>
레미콘 제조업	<u>127</u>	<u>12.0%</u>	<u>5.89</u>	<u>5.74</u>
플라스터 제품 제조업	-	0.0%	0.00	0.00
섬유시멘트 제품 제조업	1	3.6%	<u>8.08</u>	<u>12.16</u>
연마재 제조업	5	1.7%	0.95	0.99
비금속광물 분쇄물 생산업	<u>15</u>	6.3%	<u>2.71</u>	<u>2.73</u>
석면, 암면 및 유사제품 제조업	1	0.5%	0.20	0.05
기타 분류안된 비금속 광물제품 제조업	9	3.1%	<u>1.42</u>	<u>2.26</u>

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상

[표 54] 강원도 세라믹 성형·가공 세부분야별 업체 수 및 집적도

세부분야	업체 수	업체 수 비중	종사자 기준 집적도	매출액 기준 집적도
판유리 제조업	-	0.0%	0.00	0.00
유리섬유 및 광학용 유리 제조업	2	1.7%	4.45	14.57
판유리 가공품 제조업	<u>28</u>	2.2%	1.15	<u>1.08</u>
기타 산업용 유리제품 제조업	1	0.5%	0.04	0.01
가정용 유리제품 제조업	<u>10</u>	8.5%	1.21	0.29
포장용 유리용기 제조업	-	0.0%	0.00	0.00
그외 기타 유리제품 제조업	1	0.7%	0.15	0.03
가정용 및 장식용 도자기 제조업	<u>35</u>	2.0%	0.70	0.31
위생용 도자기 제조업	2	1.8%	0.23	0.16
산업용 도자기 제조업	5	2.3%	6.08	<u>9.94</u>
기타 일반도자기 제조업	3	4.3%	4.08	<u>8.02</u>
구조용 정형내화제품 제조업	3	2.3%	1.27	<u>1.62</u>
기타 내화요업제품 제조업	1	1.1%	0.06	0.00
점토 벽돌, 블록 및 유사 비내화 요업제품 제조업	8	4.8%	<u>1.17</u>	0.83
타일 및 유사 비내화 요업제품 제조업	1	1.3%	0.12	0.06
기타 구조용 비내화 요업제품 제조업	-	0.0%	0.00	0.00
콘크리트 타일, 기와, 벽돌 및 블록 제조업	<u>67</u>	7.3%	3.12	2.75
기타 구조용 콘크리트제품 제조업	<u>36</u>	6.3%	2.45	3.01
기타 콘크리트 제품 및 유사제품 제조업	3	6.7%	0.99	2.99
건설용 석제품 제조업	<u>56</u>	4.0%	2.14	1.69
기타 석제품 제조업	<u>38</u>	3.9%	2.03	<u>1.67</u>

* **밑줄** : 업체수 10개 이상, 업체 수 비중 10% 이상, 집적도 1이상

2. 해외 세라믹 산업 클러스터(일본 아이치현) 현황

가. 일본 아이치현 지역 산업 현황

- □ 아이치현은 일본의 중앙에 위치한 주부지방의 대표 지역으로, 제조업 중심의 산업구조가 형성되어 있음⁶⁴)
 - O 아이치현의 2014년 총 생산은 35조 9,903억 엔으로, 일본 내에서 도쿄 오사카에 이어 3위에 해당하는 수준임
 - 아이치현은 제조업을 비롯한 2차 산업의 비중이 전체의 약 40%를 차지해, 제조업의 비중이 일본 전체 평균 대비 매우 높음
 - 아이치현은 연구·기술 역량 또한 높아 기술인력 수 일본 3위(148,510명, 2010년 기준), 연구원 수 일본 8위(5,040명, 2010년 기준) 이며, 일본 내특허출원 건수는 3위(28,277건, 2015년 기준)에 해당함

[그림 65] 일본 주부지방 및 아이치현 위치

⁶⁴⁾ 아이치현 기본계획, 아이치현

- □ 아이치현의 제조업은 기계, 수송기기 및 금속·세라믹 등 소재 산업이 주요 비중을 차지하고 있음⁶⁵)
 - O 범용 기계기구 제조업 출하액의 전국대비 비중은 9.1%로 일본 내 2위, 생산용 기계기구 제조업은 10.7%로 일본 내 1위, 업무용 기계기구 제조업은 16.3%로 일본 내 1위 지역임
 - 기계분야의 경우 야마자기 마작, DMG MORI 정밀기계, 제이텍트 등 세계적 수준의 공작기계 기업이 아이치현에 집적함
 - 수송용 기계기구 제조업 출하액의 전국대비 비중은 39.1%로 일본 내 1위 지역임
 - 자동차 분야의 경우 토요타와 미쓰비시의 주요 생산시설과 하청기업이 집적해 있어, 일본 내 자동차분야 최대의 생산·고용 지역임
 - 항공 분야의 경우 일본 최대규모의 산업 집적 지역으로, 일본 항공기 부품 생산의 약 50%를 차지함
 - O 철강업 출하액의 전국대비 비중은 13.3%, 금속 제품 제조업은 10.1%로 두 분야 모두 일본 내 1위 지역임
 - 철강분야의 경우 해안 지역을 중심으로 대형 제철소가 입지하고 있으며, 고용 규모 또한 전국 대비 비중이 14% 수준으로 일본 내 지역 중 최대임
 - 금속제품 제조업의 경우 금속 스탬핑, 금속제품 도장, 금속 도금 제품등을 중심으로 생산함
 - O 요업·토석 제품 제조업 출하액의 전국대비 비중은 10.4%로 일본 내 1위 지역임
 - 요업 분야는 아이치현 지역이 예부터 전통도자기로 유명한 지역으로, 아이치현 내 세토시의 세토야키, 타지미시의 미노야키가 일본을 대표하는 도자기임
 - 파인세라믹 등 첨단 세라믹 기업 또한 다수 집적해 있으며, 아이치현 내 세토시에만 60여개 이상의 파인세라믹 기업이 집적해 있음
 - 요업·토석 제품 제조업 고용규모 또한 전국 대비 비중이 10.6% 수준으로 일본 내 지역 중 최대임

⁶⁵⁾ 아이치현 기본계획, 아이치현 그레이터 나고야 이니셔티브 홈페이지(http://greaternagoya.org)

[표 55] 일본 아이치현 제조업 현황

업종(2014년 공업통계조사)	사업체 수 (개)	출하액 (억 엔)	전국대비 비중 (%)	전국대비 비중 순위
목재 · 목재품 제조업	293	1,536	5.4	5
펄프 · 종이 · 종이 가공품 제조업	458	4,061	5.8	5
화학 공업	217	12,084	4.3	11
석유 제품 · 석탄 제품 제조업	48	9,844	5.3	7
플라스틱 제품 제조업	1491	14,520	12.6	1
고무 제품 제조업	239	4,138	12.9	1
요업 · 토석 제품 제조업	775	7,614	10.4	1
철강업	500	25,568	13.3	1
비철금속 제조업	205	5,619	6	7
금속 제품 제조업	2361	14,138	10.1	1
범용 기계기구 제조업	651	9,191	9.1	2
생산용 기계기구 제조업	2282	17,812	10.7	1
업무용 기계기구 제조업	323	11,487	16.3	1
전기 기계기구 제조업	754	21,451	12.6	1
정보 통신 기계기구 제조업	33	8,924	10.3	1
수송용 기계기구 제조업	1807	235,089	39.1	1
식료품 제조업	1255	16,049	6.2	2
음료 · 담배 · 사료 제조업	142	4,445	4.6	8
섬유 산업	1123	4,224	11.1	1
가구 · 장비품 제조업	444	1,591	8.3	1
인쇄 · 인쇄 관련업	761	3,522	6.5	4
가죽·가죽 제품·모피 제조업	41	199	5.7	5
기타 제조업	470	2,937	7.5	2

[그림 66] 아이치현 내 세라믹 분야 대표기업 목록

나. 일본 아이치현 지역 세라믹 관련 혁신기관 현황

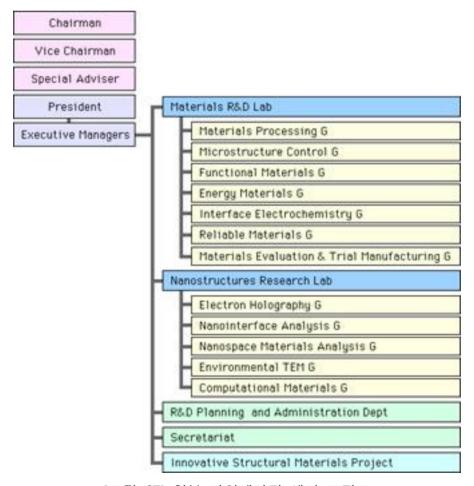
(1)	중무과악기술센터	-	그레이터	나고야	이니셔티므(이하 GNI) 센터	
-----	----------	---	------	-----	------------------	--

- □ 중부과학기술센터는 공익재단법인으로, 과학기술 진흥에 관한 제반 사업을 추진하여 일본 주부 지역 산업을 발전시키고 과학기술 수준을 향상시키는 것이 주 목적이며 아래와 같은 사업을 추진함⁶⁶⁾
 - O [공익 목적 사업] 지역산업진흥사업, GNI 사업 등 과학 기술 개발 및 보급 사업
 - O [수익 사업] 공동 연구개발 등 수탁 사업
 - O [기타 사업] 과학기술계 인재 육성 등 과학기술 단체의 업무 지원
- □ 중부과학기술센터에서 추진하고 있는 GNI 사업은 나고야 엑스포를 계기로 해외 교류를 확대하고자 시작됨67)
 - O 나고야 엑스포 준비과정 중인 2004년부터 사업이 구상되었으며, 2005년 개최된 엑스포 수익금을 바탕으로 2006년부터 사업을 착수함(이사회 구성 및 사무국 설립)
 - 도쿄를 비롯한 수도권 지역의 경우 해외 투자가 많은 반면, 나고야 시를 비롯한 아이치현 지역은 제조업이 발전한 지역임에도 불구하고 해외투자가 저조하였으며, 이를 극복하고자 사업을 추진하게 됨
- □ GNI 사업은 해외 기업에 대한 일본 투자 유치를 통해 지역경제를 발전시키는 것이 주목적임⁶⁸)
 - O 제조업 가치사실 중 최상위에 있는 기업들을 대상으로 유치활동을 하고 있으며, 사업 착수 후 2017년 까지 약 136개의 해외 기업 유치에 성공함
 - O 최근 항공·우주 산업 분야에서 성과가 주로 발생되고 있음

⁶⁶⁾ 중부과학기술센터 홈페이지(http://www.cstc.or.jp)

⁶⁷⁾ 중부과학기술센터 주무 기관인 일본 경제산업성 중부경제산업국 인터뷰 결과

⁶⁸⁾ 중부과학기술센터 주무 기관인 일본 경제산업성 중부경제산업국 인터뷰 결과


- □ 그레이터 나고야 이니셔티브 센터(이하 GNIC)는 나고야 지역에서의 사업 추진에 관심이 있는 해외 기업에 대한 원스톱 창구기능을 수행하며, 더불어 지역 혁신주체간의 교류를 지원하는 GNI 파트너스 클럽을 운영함⁽⁹⁾
 - O GNIC는 나고야 지역 진출에 관심이 있는 해외기업을 대상으로 지역에 대한 정보 제공, 잠재적 협력기관과의 면담 주선 등을 담당하며, 동시에 해외 시장 진출에 관심이 있는 지역 기업에게 관련 정보를 제공함
 - O GNI 파트너스 클럽은 지역 내 기업, 대학, 연구기관, 금융기관 및 공공기관과의 교류 지원을 주된 목적으로 추진함
 - 주로 기술을 보유한 대학·연구기관과 기업 간의 교류 지원에 집중하고 있으며, 금융기관 및 공공기관은 지역 또는 해외 기업의 자금조달이나 사업추진에 대한 상담을 맡음
 - 현재 약 530여개 기업 및 기관이 참여하고 있음

⁶⁹⁾ 중부과학기술센터 주무 기관인 일본 경제산업성 중부경제산업국 인터뷰 결과

(2) 일본 파인세라믹 센터(JFCC)

- □ 일본을 대표하는 세라믹 분야 공공 연구기관(비영리재단법인)으로 1985년 설립되었으며, 기능세라믹 분야 중심으로 연구를 수행하고 있음70)
 - O 정부로부터 운영예산을 지원받지 않고 수탁 연구 및 시험 분석을 바탕으로 창출된 수익을 바탕으로 운영하고 있어 기관의 자율적 운영이 보장되어 있음
 - 전체 예산 중 세부 항목 별 비중은 정부수탁 33%, 기업수탁 19%, 시험평가 27%, 표준물질/데이터 배포 사업 10%, 기타 11% 등임
 - O 세부 조직은 재료연구소와 나노구조연구소로 구성되어 있으며, 설립 초기에는 구조세라믹 중심으로 연구를 수행하였으나 최근에는 기능세라믹 연구에 집중함

[그림 67] 일본 파인세라믹 센터 조직도

⁷⁰⁾ 일본 파인세라믹 센터 홈페이지(http://www.jfcc.or.jp) 일본 파인세라믹 센터 연구기획부 인터뷰 결과

[그림 68] 일본 파인세라믹 센터 전경

- □ 연구기관으로서 강점을 갖는 시험·분석 역량을 바탕으로 기업과 협력하고 있음71)
 - O 기업이 자체 보유하기 어려운 분석 장비를 활용하여 기업을 대상으로 시험·분석 서비스를 제공하는 것이 주요 협력 활동임(기업 수탁 연구)
 - O 기업을 대상으로 한 기술이전 사례는 거의 없으며, 공동연구 형태로 추진하는 경우가 많음
 - 지역 내 기업에 특화된 지원 프로그램은 운영하고 있지 않으며, 최근 기능세라믹 중심의 연구 경향으로 인해 지역 내 주요 산업인 자동차 · 기계 · 항공 산업과의 연계가 어려운 측면이 있음

⁷¹⁾ 일본 파인세라믹 센터 연구기획부 인터뷰 결과

(3) 아이치현 도자기공업 협동조합

- □ 아이치현 도자기공업 협동조합(이하 조합)은 아이치현 내 세라믹 기업간의 협력 증진을 목적으로 1926년 설립함72)
 - 전통도자기와 파인세라믹 집적지로 유명한 세토시에 조합의 사무처가 위치해 있으며, 약 300여개의 기업이 조합에 참여하고 있음
 - O 조합 차원에서 추진하고 있는 사업은 다음과 같음
 - [점토사업] 도자기의 원료가 되는 점토를 채굴하여 조합원들에게 공급함
 - [유통사업] 조합원이 생산하는 제품의 소개, 알선, 판매 및 상담 대응을 수행함
 - [기술진흥사업] 연구개발, 요업 원료 및 제품 등에 대한 각종 시험·측정·분석 수행, 기술상담 및 지도, 연구회 운영 등을 추진함

[그림 69] 아이치현 도자기공업 협동조합 전경

⁷²⁾ 아이치현 도자기공업 협동조합 홈페이지(http://www.aitohko.com)

- □ 과거 아이치현의 전통도자기 기업들이 사업 영역을 확장하는 과정에서 산업용 세라믹 분야로 진출하게 되었으며, 이것이 아이치현 내 파인세라믹 기업이 집적하게 된 배경임 73)
 - O 조합 설립 이전부터 지역의 도자기 기업 중 일부 기업이 사업 확장 측면에서 애자를 생산하기 시작하였으며, 대표적 기업이 모리무라임
 - O 모리무라는 1910년 경부터 NGK, 토토, 노리다케 등으로 분할되어 현재의 모리무라 그룹을 형성하고 있으며, 모리무라 그룹의 성장이 해당 지역에 세라믹 산업이 발전함에 있어 주요 요인이 됨
 - O 애자의 경우 사용처나 수요기업의 요구조건에 따라 다양한 형상을 가져야 했으며, 이러한 기술이 밑바탕이 되어 해당 기업들이 현재의 파인세라믹 기업으로 성장함
- □ 아이치현 파인세라믹 기업들에게 있어 조합 참여의 주된 동인은 사업 추진에 있어 실질적으로 도움이 되는 정보 교류가 가능하다는 것임⁷⁴)
 - 조합에 파인세라믹 부회가 설립된 것은 약 30여년 정도 되었으며, 현재 약 40여개 회사가 회원으로 참여중임
 - O 조합 차원에서 추진중인 점토사업 등은 파인세라믹기업 입장에서 효용이 없으며, 조합원간의 정보 교류가 조합 참여에 있어 주된 동인임
 - O 교류되는 정보는 주로 생산장비에 대한 정보, 원료 납품처에 대한 정보 등이며, 자신들이 대응할 수 없는 의뢰를 아무조건 없이 다른 회원사에 연결시켜 주기도 함
 - O 회원사간 생산품목이 최대한 중복되지 않고 상호 보완적인 제품을 생산하도록 자발적으로 조정하고 있으며, 부득이 경쟁이 필요한 경우 가격경쟁을 하지 않는다는 원칙을 암묵적으로 지키고 있음
 - 과거 애자 시장에서, 과도한 가격경쟁으로 인해 지역 기업이 전반적으로 어려움에 처했던 경험을 교훈으로 삼음

⁷³⁾ 아이치현 도자기공업 협동조합 파인세라믹부회 대표 인터뷰 결과 74) 아이치현 도자기공업 협동조합 파인세라믹부회 대표 인터뷰 결과

- □ 아이치현 파인세라믹 기업의 경우 규모가 작더라도 대부분 자체 연구조직을 보유하고 있으며, 기술경쟁력에 대한 자부심이 높음75)
 - O 대부분 기업이 연구개발 조직을 보유하고 자체 연구를 진행하고 있으며, 고가의 장비를 활용한 시험·분석이 필요한 경우 지역 내 연구소(JFCC, 아이치 산업과학기술종합센터)에 의뢰하고 있음
 - 파인세라믹 부회 대표 기업인 마루와이의 경우 전체 직원 35명 중 5명이 연구직이며, 최근 아이치 산업과학기술 종합센터와 세라믹(알루미나) 3D프린팅 연구를 진행중임
 - O 대기업에 비해 연구인력은 적으나, 대기업은 다양한 분야의 연구를 진행하는 반면 마루와이와 같은 중소기업은 특정 분야에 집중하고 있기 때문에 개발 제품에 관련된 기술력은 대기업에 비해 부족하지 않다고 자부함
- □ 연관산업이 잘 형성되어 있다는 점이 파인세라믹 사업 추진에 있어 아이치현의 장점임76)
 - 지역에 파인세라믹 분야 기업이 집적하면서, 연관산업인 원료 기업 · 장비 공급/유지보수 기업 등이 함께 집적하여 사업 추진의 편의성이 높아짐
 - O 부품 고온 성형과정에서 요구되는 대용량 부탄가스 또한 저렴하게 구입 가능함
 - 〇 노리타케 社와 같이 양질의 석고를 생산하는 기업이 지역 내 다수 소재함
 - 파인세라믹 부품의 성형 틀을 석고로 제작함
 - O 인근에 도자기 생산 기업도 다수 집적되어 있어 관련 장비 제조기업 또한 다수 집적되어 있음
 - 도자기 생산 장비와 파인세라믹 생산 장비 중 유사 장비가 많아 저렴한 비용으로 장비 제작 및 구매 가능함

⁷⁵⁾ 아이치현 도자기공업 협동조합 파인세라믹부회 대표 인터뷰 결과

⁷⁶⁾ 아이치현 도자기공업 협동조합 파인세라믹부회 대표 인터뷰 결과

3. 소결

- □ 선제적으로 세라믹 산업 육성 중인 타 지자체(강원, 전남)의 경우 세라믹 분말·성형 분야를 중심으로 기업 지원 인프라를 구축하고 있음
 - 강원도 강릉시 세라믹 신소재센터의 경우 반도체·전자분야 중심으로 세라믹 분말·소결 제품 생산지원 인프라를 구축하고 있음
 - 전라남도 목포시 세라믹산업 종합지원센터의 경우 분말원료 및 중대형 구조세라믹 소결 제품 중심으로 생산지원 인프라를 구축하고 있음
- □ 일본 최대의 세라믹 산업 집적지역인 아이치현 지역의 경우 세라믹 기업 간의 N/W가 높은 수준으로 형성되어 있으며, 우수한 기술수준의 세라믹 전문 연구기관이 지역 기업에 시험·분석 서비스를 제공하고 있음
 - O 아이치현 도자기공업 협동조합은 아이치현 내 세라믹 기업간의 협력 증진을 목적으로 1926년 설립되어 약 300여개의 기업이 조합에 참여하고 있으며, 아래와 같은 사업을 추진하고 잇음
 - [점토사업] 도자기의 원료가 되는 점토를 채굴하여 조합원들에게 공급함
 - [유통사업] 조합원이 생산하는 제품의 소개, 알선, 판매 및 상담 대응을 수행함
 - [기술진흥사업] 연구개발, 요업 원료 및 제품 등에 대한 각종 시험 측정· 분석 수행, 기술상담 및 지도, 연구회 운영 등을 추진함
 - O 아이치현 나고야시에 위치한 일본파인세라믹센터는 일본을 대표하는 세라믹 분야 공공연구기관으로, 강점인 시험분석 역량을 바탕으로 기업과 협력하고 있음
 - 기업이 자체 보유하기 어려운 분석장비를 활용하여 기업을 대상으로 시험·분석 서비스를 제공하는 것이 주요 협력 활동임
 - 기업과의 연구 협력의 경우 공동연구 형태로 추진하는 경우가 다수임

VI. 경남 세라믹산업 육성 방안

1. 경남 세라믹산업 육성 방향

- □ 앞서 수행한 경남 세라믹산업 관련 대내외 환경분석 결과를 바탕으로 경남 세라믹 산업 SWOT 분석을 수행함
 - O 경남 세라믹산업의 주요 강점요인은 다음과 같음
 - 전통세라믹 원료인 고령토 생산 기업이 전국 최대 규모로 도내에 소재하고 있으며, 위생도기·타일·내화물 등 전통세라믹 기업이 집적해 있음
 - 도내에 세라믹 섬유 생산기업, 세라믹 섬유·복합재료 활용 부품 생산기업, 최종 수요산업(항공우주, 조선해양, 국방 등)이 형성되어 있음
 - 한국세라믹기술원, 재료연구소 등 국내 최고수준의 세라믹 관련 연구기반이 구축되어 있음
 - 경남 세라믹산업의 주요 약점요인은 다음과 같음
 - 세라믹 섬유·복합재료 외에 경상남도 내 소재하고 있는 첨단세라믹 기업 수가 적으며, 특히 첨단세라믹 산업 중 가장 큰 비중을 차지하는 세라믹 분말·소결 기업 수가 매우 적음
 - 소기업 중심으로 세라믹 산업이 형성되어 있어 기업 독자적 연구개발, 인력 양성, 시장개척 등 혁신 역량이 부족함
 - 선제적으로 세라믹 산업을 육성하고 있는 타 지자체 대비 세라믹 소재 부품 관련 시제품 제작, 파일럿 생산 등 기업 지원 인프라 부족함
 - 경남 세라믹산업의 주요 기회요인은 다음과 같음
 - 중앙정부의 소재 부품 육성 정책상에서 세라믹 소재 부품의 중요성이 강조되고 있으며, 중앙정부의 전략적 육성 대상 산업과 세라믹 소재 부품과의 연관성 또한 높음
 - 경남 진주혁신도시를 중심으로 한 국가혁신클러스터, 경남 밀양시에 조성중인 나노융합 국가산업단지 등 세라믹 산업 육성의 기반이 구축됨

- 경상남도 내 견직물(실크) 제조기업의 세라믹 섬유 분야 사업 확대, 금속 및 유기소재 코팅 기업의 세라믹 코팅 분야 사업 확대 수요를 확인함
- 경남 세라믹산업의 주요 위협요인은 다음과 같음
 - 타 지자체에서(강원 강릉, 전남 목포) 선도적으로 세라믹 산업 육성 추진 중이며, 주로 세라믹 분말·소결 분야 중심으로 기업 지원 인프라를 구축하고 있음
 - 경상남도 내 주요 세라믹 수요산업을 포함한 제조업 전반의 경쟁력 약화로 인해 단기적인 세라믹 수요 창출 및 확대에 한계가 있음
- 경남 세라믹산업의 강점·약점·기회·위협 요인을 바탕으로 도출한 육성 방향은 다음과 같음
 - [강점-기회] 타 첨단세라믹 분야 대비 산업 형성 정도가 우수한 세라믹 섬유·복합재료 산업의 고도화를 지속적으로 추진함
 - [강점-위협] 경상남도내 집적되어있는 전통세라믹 기업의 경쟁력 강화를 통해 세라믹 산업 육성에 있어 단기적 성공사례를 창출함
 - [약점-기회] 기존 금속·유기소재 코팅 기업의 세라믹 코팅 산업 진출 활성화를 통해 경남 세라믹 산업 규모를 확대하고, 기존 코팅 기업의 고부가가치화를 유도함
 - [약점-위협] 경상남도 세라믹 산업의 지속적 성장과, 수요산업과 연계한 경남 제조업 전반의 발전 가능하도록 혁신역량 확보 기반을 마련함
- □ 경남 세라믹산업 육성 방향에 따라 도출된 경남 세라믹산업 육성 비전 · 목표 및 추진전략은 다음과 같음
 - O [비전] 세라믹산업이 실현하는 경남 제조업 르네상스
 - [목표] 단기 : 대한민국 대표 세라믹 산업 육성 지역

중기 : 국내 최고수준의 세라믹 산업 성장 지역

장기: 세라믹 기반 글로벌 제조업 중심 지역

- [추진전략] 경남 세라믹산업 육성 방향과 연계한 단계별 추진 전략은 다음과 같음
 - (단기전략) 전통세라믹 경쟁력 강화를 통한 세라믹 산업 육성 성과 창출
 - * 스마트 팩토리 기반 전통세라믹 공정 고도화 추진
 - * 전통세라믹 제품 고부가가치화를 위한 기술개발 지원
 - (중기전략) 세라믹 코팅 분야로의 전환·확대를 통한 첨단 세라믹산업 성장
 - * 세라믹 코팅 기술 양산화 확대를 위한 전주기 맞춤형 지원
 - * 도내 수요산업과 연계한 세라믹 코팅 소재 및 부품 개발
 - * 세라믹 코팅 분야 기술 및 연구 전문인력 양성
 - (장기전략) 세라믹 섬유·복합재료 고도화를 통한 수요산업 동반 경쟁력 강화
 - * 극한환경 세라믹 섬유·복합재료 시험 인증 지원
 - * 글로벌 수요 대응 가능한 세라믹 섬유 · 복합재료 고도화 기술 개발
 - * 세계적 수준의 세라믹 섬유·복합재료 기술 및 연구 전문인력 양성
 - (기반전략) 경남 세라믹 산업 지속 성장을 위한 혁신 기반 조성
 - * 경남 세라믹 특화단지 조성, 전문인력 양성 및 창업ㆍ기업육성 지원
 - * 경남 세라믹 혁신기관 보유 기술 이전, 기술사업화 활성화 지원
 - * 경남 세라믹 수요 연계 강화 및 해외시장 개척 지원

강점(Strength)

- 전통세라믹 산업 집적
- 세라믹섬유·복합재료산업형성
- 우수한세라믹연구인프라

- 중앙정부세라믹산업육성의지(정책)
- 경남 세라믹산업 육성 기반 조성 (혁신클러스터, 나노융합산단등)
- 세라믹사업전환·확대수요확인 (견직물, 코팅기업 등)

기회(Opportunity)

약점 (Weakness)

- 첨단세라믹 산업 형성 부족
- 소기업 중심의 산업 구조(혁신 역량 부족)
- 세라믹산업지원인프라부족

- 타 지자체 세라믹 산업 육성 선제적 추진 (강원 강릉, 전남 목포, 세라믹 분말·소결)
- 경남 제조업 전반의 경쟁력 약화로 인한 세라믹 수요 창출·확대 어려움

위협 (Threat)

SO

세라믹 섬유·복합재료 산업 고도화 지속 추진

ST

전통세라믹 경쟁력 강화를 통한 단기적 성공사례 창출

WO

기존 금속·유기소재 코팅 기업의 세라믹 코팅 진출 활성화 유도

WT

경남 세라믹 산업 전반의 <mark>혁신 역량</mark> 확보를 위한 기반 마련

[그림 70] 경남 세라믹산업 SWOT 분석

[그림 71] 경남 세라믹산업 육성 비전 · 목표 및 추진전략

2. 경남 세라믹산업 육성 추진 계획

가. 경남 전통세라믹 산업 경쟁력 강화 사업

- (1) 추진배경 및 필요성
 - □ 전세계 전통세라믹 시장의 지속적인 성장이 예상되며, 국내 전통세라믹 시장 또한 성장 중이나 전세계 시장 대비 성장 추세는 저조함
 - 전세계 전통 세라믹 시장은 2015년 기준 약 1,152억 달러 규모이며, 2022년까지 연평균 6.2% 수준으로 성장할 것으로 예상⁷⁷)
 - 전통세라믹 산업 규모는 2015년 기준 24조 2,642억 원 규모이며, 2013년 이후 연평균 3.4% 수준으로 성장⁷⁸)
 - □ 경상남도에는 다양한 전통세라믹 산업이 집적해 있으며, 전통세라믹 원료인 고령토 관련 산업 또한 집적해 있음79)
 - O 경상남도 내 위생도기 · 타일 등의 요업제품 및 내화물 제조 산업이 집적됨
 - 위생용 도자기 제조업 : 경상남도 업체 수 16개(전국 대비 14.3%), 종사자 기준 입지계수 1.71, 매출액 기준 입지계수 1.26
 - 타일 및 유사 비내화 요업제품 제조업 : 경상남도 업체 수 13개(전국 대비 17.1%), 종사자 기준 입지계수 2.03, 매출액 기준 입지계수 2.43
 - 구조용 정형내화제품 제조업 : 경상남도 업체 수 24개(전국 대비 18.6%), 종사자 기준 입지계수 1.77, 매출액 기준 입지계수 1.43
 - 주요기업은 ㈜대림비앤코, ㈜아이에스동서(이상 위생용 도자기), ㈜삼영산업, ㈜선경산업(이상 타일), ㈜동국알앤에스, ㈜원진월드와이드(이상 내화제품) 등임
 - O 경상남도 내 고령토 관련 업체 수는 전국 최대 수준임
 - 고령토 및 기타 점토 광업 : 경상남도 업체 수 33개(전국 대비 50.8%), 종사자 기준 입지계수 3.37, 매출액 기준 입지계수 3.66

^{79) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과

⁷⁷⁾ Ceramic Market Analysis(Grand View Research, 2016), Advanced Ceramic Market Size, Share & Trend Analysis(Grand View Research, 2018) 바탕으로 ㈜날리지웍스 추정

^{78) 2015} 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2016), 2016 세라믹산업 통계 및 동향조사(한국세라믹기술원, 2017)

- □ 경상남도 내 전통 세라믹 제조 기업은 제품 품질 개선을 통해 해외 선도 기업 대비 경쟁력을 확보하는 것, 고령토 생산 기업은 저품위 원료의 품위를 개선하는 것이 주요 이슈임80)
 - 위생도기, 타일, 내화물 등 전통 세라믹 제품의 품질은 생산 공정의 고도화 정도에 많은 영향을 받으나, 현재 전통 세라믹 생산 공정 중 상당 비중이 수작업으로 이루어지며 공정의 자동화·데이터화가 부족한 상황임
 - O 고령토의 경우 경상남도에서 채굴되는 고령토의 품위가 우수하지 않아 활용분야가 저부가가치 영역 중심으로 한정되어 있으며, 수입 고령토 대비 가격 경쟁력 또한 부족한 상황임
- □ 국내 전통세라믹(위생용 도자기, 타일, 내화물 분야) 제조 산업 및 고령토 산업 경쟁력이 전반적으로 약화되고 있어, 정책적 지원을 통한 산업 경쟁력 제고가 요구됨
 - O 전통세라믹 제조 기업 수 및 총 매출액 규모는 증가하였으나, 영업이익은 감소 추세임81)
 - 국내 전통세라믹(위생용 도자기, 타일, 내화물) 제조 기업은 2015년 257개에서 2015년 317개로 증가하였으며, 동기간 동안 총 매출액은 연평균 10.6% 증가함(2010년 1조552억 원, 2015년 1조 7,486억 원)
 - 반면, 동기간 동안 총 영업이익은 연평균 11.5% 감소한 것으로 나타남(2010년 2,441억 원, 2015년 1,322억 원)
 - O 고령토 생산기업의 경우 기업 수는 증가한 반면 총 매출액과 영역이익은 감소 추세임82)
 - 국내 고령토 생산 기업은 2015년 기준 65개로 2010년 38개 대비 증가함
 - 반면, 동기간 동안 매출액은 연평균 1.0% 감소(2010년 약 427억 원, 2015년 약 405억 원), 영역이익은 연평균 25.8% 감소함(2010년 77억 원, 2015년 17억 원)

⁸⁰⁾ 경상남도 전통세라믹 기업 인터뷰 결과

^{81) 2010, 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과

⁽표준산업분류 - 위생용 도자기 제조업, 구조용 정형내화제품 제조업, 타일 및 유사 비내화 요업제품 제조업 기준)

^{82) 2010, 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과(표준산업분류 - 고령토 및 기타 점토 광업 기준)

(2)	사업	개요

- □ 사업 목적
 - O 경상남도 전통세라믹 공정 개선·고도화를 통한 품질 개선 및 제품 경쟁력 제고
 - O 경상남도 전통세라믹 기업 고부가가치 제품 개발을 통한 수익 개선 및 지속가능성 제고
- □ 사업 기간
 - O 2019년 ~ 2022년 (4년간)
- □ 사업 내용
 - O 스마트팩토리 기반 전통세라믹 공정 고도화
 - O 전통세라믹 제품 고부가가치화 기술 개발
- □ 사업 수행 주체 및 추진 전략
 - O [스마트팩토리 기반 전통세라믹 공정 고도화] 경상남도 및 경남TP 연계를 통한 도내 기업 지원
 - 중기부 '스마트공장 보급·확산'사업 연계 및 지방비 매칭을 통한 사업 추진(기업 지원)
 - 산업부 '스마트공장제조핵심기술개발'사업 연계 및 지방비 매칭을 통한 사업 추진(기업 지원)
 - O [전통세라믹 제품 고부가가치화 기술 개발] 도내 연구기관 · 대학과 도내 기업 간 공동 연구 수행
 - 중기부 '지역특화산업육성'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진

- □ 총 사업비 : 164억 원
 - O 스마트팩토리 기반 전통세라믹 공정 고도화 : 총 84억 원
 - 전통세라믹 제품 고부가가치화 기술 개발 : 총 80억 원
- □ 기대 효과
 - O 전통세라믹 기업의 매출·수익 증대를 통한 경상남도 세라믹 산업 규모 및 경쟁력 확대
 - O 기존 전통세라믹 산업의 안정적 사업 추진을 통한 고용 안정
 - O 세라믹 산업 육성 및 스마트팩토리 보급 확대에 있어 국내 대표 지역으로서의 입지 구축

(3) 세부 사업 내용

- □ 스마트팩토리 기반 전통세라믹 공정 고도화
 - 전통세라믹 기업 품질 혁신 및 제품 고부가가치화를 위한 스마트 생산 공정 개발 지원
 - 스마트팩토리 연계 가능한 제품 개발 체계 및 성능·품질 평가 체계 개발
 - 스마트팩토리 도입 및 생산공정 고도화를 위한 설비·기반기술 개발
 - 스마트팩토리 통합 운영을 위한 솔루션(S/W 패키지) 개발
 - 전통세라믹 제품 개발 및 공정 고도화 위한 스마트팩토리 시범공장 지원
 - 경남 전통세라믹 대표분야별(위생도기, 타일, 내화물 등) 스마트팩토리 시범공장 구축 지원 및 정보 공유(벤치마킹 지원)
 - O 전통세라믹 기업 스마트팩토리 도입 지원
 - 현장자동화, 공장운영 및 실시간 최적화 분야 스마트팩토리 도입 지원
 - 제품개발 분야 스마트팩토리 도입 지원
 - 공급사슬 및 기업자원 관리 최적화 분야 스마트팩토리 도입 지원
- □ 전통세라믹 제품 고부가가치화 제품 개발
 - 경남 고령토 활용 확대를 위한 고령토 품질 개선 및 고부가가치화 기술 개발 지원
 - 고령토 정제 및 나노 분쇄·합성 기술 개발
 - 고령토 고부가가치 활용기술 개발(석유화학 촉매, 온실가스 포집 등)
 - 전통세라믹(도기/타일) 소재 및 표면 개선을 통한 고부가가치 제품 개발 지원
 - 전통세라믹 소재 고강도·고경도·경량화 기술 개발
 - 고온 소성 및 발색 개선을 위한 전통세라믹용 유약 개선 기술 개발
 - O 경남 전통세라믹 제품 디자인 개선 지원
 - 도내 대학·연구기관 연계를 통한 디자인 개선 및 시제품 제작 지원

나. 경남 세라믹 코팅 산업 육성 사업

(1) 추진배경 및 필요성

- □ 전세계 세라믹 코팅 시장의 지속적인 성장이 예상되며, 국내 세라믹 코팅 시장 또한 성장 예상되나 전세계 시장 대비 성장 추세는 저조함
 - 전세계 세라믹 코팅 시장은 2016년 기준 약 70억 8천만 달러 규모이며, 2025년까지 연평균 7.5% 수준으로 성장할 것으로 예상⁸³)
 - 국내 세라믹 코팅 시장은 2015년 기준 1,800억 원 규모이며, 2020년까지 연평균 2.0% 수준의 성장이 예상⁸⁴⁾
- □ 경상남도 내 다수 세라믹 코팅 기업이 소재하고 있으며, 세라믹 코팅 분야로의 확대를 희망하는 기존 금속·유기소재 코팅 기업이 집적해 있음
 - 경상남도 내 ㈜서머텍코리아, ㈜우주용사공업, ㈜에이스코트, ㈜탑코팅 등 세라믹 코팅(용사코팅) 전문 기업 소재85)
 - O 경상남도는 코팅분야(세라믹 및 기존 금속·유기소재 코팅 전체) 업체 수 기준 전국 3위, 매출액 기준 전국 4위 지역임86)
 - 경상남도 코팅 기업은 890개로 전국(6,189개) 대비 14.4% 수준임
 - 경상남도 코팅 기업 매출액 총합은 약 2조 518억 원으로 전국(16조 995억 원) 대비 12.7% 수준임
 - 경상남도 코팅 분야 매출액 기준 입지 계수는 1.34 수준임
 - O 세라믹 코팅은 기존 금속·유기소재 코팅 대비 高 내열 · 내마모 · 내산화 특성을 발휘하는 고부가가치 영역으로, 기존 코팅 기업의 관심도가 높은 분야임87)

⁸³⁾ Ceramic Coating Market Analysis, Grand View Research, 2017

⁸⁴⁾ 중소·중견기업 기술로드맵 2018-2020, 중소벤처기업부, 2017

⁸⁵⁾ 경상남도 세라믹 코팅 기업 인터뷰 결과

^{86) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과 (코팅분야: '도금, 착색 및 기타 표면처리강재 제조업', '금속 열처리업', '도금업', '도장 및 기타 피막처리업')

⁸⁷⁾ 경상남도 코팅 기업 인터뷰 결과

- □ 세라믹 코팅의 경우 다양한 코팅 소재와 코팅 방법의 조합으로 수많은 요구조건에 대응할 수 있는 특성이 있으나, 소규모 개별기업이 다수의 장비를 직접 보유하고 시제품을 시험 생산하는 것은 어려움이 있음
 - 세라믹 코팅 소재와 코팅이 요구되는 환경에 따라, 화학/물리 증착 · 플라즈마 등 다양한 코팅 방법이 활용될 수 있으나, 소규모 개별기업이 사업 전환/확대 가능성을 타진하거나 시제품 생산 목적으로 다양한 장비를 구축하는 것은 어려움이 있음
 - 세라믹 코팅이 적용된 소재 부품의 난삭재 특성으로 인해 정밀 부품 제조를 위해서는 고성능의 후가공 장비가 요구되나, 소규모 기업이 자체 보유하기에 어려움이 있음
- □ 경상남도는 세라믹 코팅의 핵심 수요산업인 기계, 항공우주, 국방 산업이 집적한 지역이며, 인접한 전남·울산 지역 또한 석유화학·제철 등의 세라믹 코팅 수요산업이 입지함⁸⁸)
 - 기계 분야의 경우 고온 환경에서의 내구성을 요하는 내연기관 및 터빈, 핵반응기 · 증기발생기 등의 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 내연기관 제조업(항공기·차량용 제외) : 336개(전국 대비 40.8%), 입지계수 5.87 기타 기관 및 터빈 제조업 : 23개(전국 대비 31.1%), 입지계수 2.39 핵반응기 및 증기발생기 제조업 : 23개(전국 대비 16.3%), 입지계수 9.78 증류기·열교환기 및 가스발생기 제조업 : 125개(전국 대비 21.6%), 입지계수 2.98
 - O 항공우주 분야의 경우 국내 최고 수준의 산업 집적 지역으로, 관련분야 완제품 및 부품 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 항공기, 우주선 및 보조장치 제조업 : 7개(전국 대비 16.3%), 입지계수 10.33 항공기용 부품 제조업 : 155개(전국 대비 66.5%), 입지계수 5.31
 - O 국방 분야의 경우 전투용 차량, 무기 등의 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 전투용 차량 제조업 : 25개(전국 대비 67.6%), 입지계수 10.23 무기 및 총포탄 제조업 : 49개(전국 대비 40.8%), 입지계수 2.34

^{88) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과

- □ 경남 주력산업인 자동차 부품의 경우 현재 세라믹 코팅 활용도가 높지 않으나, 미래 자동차(전기차, 수소차 등) 시장 성장과 더불어 핵심 요구조건인 '에너지 효율 향상'을 위해 세라믹 코팅의 활용이 급격히 증가할 것으로 예상됨
 - 경상남도에는 각종 자동차 부품 산업이 국내 최고 수준으로 집적되어 있음
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 자동차용 엔진 제조업 : 4개(전국 대비 22.2%), 입지계수 4.01 자동차 엔진용 부품 제조업 : 516개(전국 대비 28.0%), 입지계수 2.14 자동차용 동력전달장치 제조업 : 491개(전국 대비 33.6%), 입지계수 2.79 기타 자동차용 부품 제조업 : 828개(전국 대비 18.2%), 입지계수 1.33
 - 전기차·수소차의 핵심 요인은 '에너지 효율 향상'이며 이를 위해 중요시 되는 '열관리'와 '경량화'에 있어 세라믹 코팅의 활용도가 매우 높음
 - 미래 자동차의 핵심 부품인 구동모터, 배터리, 연료전지(PEMFC) 등의 경우 고온 환경에서 에너지 효율이 저하되는 특성이 나타나므로, 해당 부품의 열관리를 위해 방열 효과가 우수한 세라믹 코팅의 활용성이 높음
 - 미래 자동차에서도 고 내열 · 내마모 특성이 요구되는 부품(구동모터 시스템 등)에 세라믹 코팅이 적용된 경량 소재를 적용함으로써 차량 경량화에 기여할 수 있음
- □ 국내 코팅 산업이 외형적으로 성장한 반면 기업들의 경쟁력은 약화되고 있는 상황으로, 정책적 지원을 통한 경쟁력 제고가 요구됨89)
 - O 국내 코팅분야 전체 기업 수는 2015년 기준 6,189개 社로 2010년 4,823개 社 대비 연평균 5.1% 증가함
 - O 반면, 동기간 동안 코팅분야 기업 전체 매출액은 연평균 1.7% 감소하였으며, 영업이익은 연평균 6.6% 감소함

^{89) 2010, 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과 (코팅분야: '도금, 착색 및 기타 표면처리강재 제조업', '금속 열처리업', '도금업', '도장 및 기타 피막처리업')

(2) 사업 개요

- □ 사업 목적
 - O 경상남도 세라믹 코팅 기업 시장 다변화를 통한 산업 경쟁력 확대
 - 경상남도 기존 금속·유기 소재 코팅 기업의 세라믹 코팅 업종 전환·다각화를 통한 고부가가치화 유도
- □ 사업 기간
 - O 2021년 ~ 2025년 (5년간)
- □ 사업 내용
 - O [인프라] 전주기 맞춤형 세라믹 코팅 기술 양산화 지원 센터 구축 및 운영
 - O [연구개발] 수요산업 연계형 세라믹 코팅 소재 부품 개발
 - O [인력양성] 세라믹 코팅 전문인력 양성
- □ 사업 수행 주체 및 추진 전략
 - O [인프라] 도내 연구기관· 대학 부속 센터 설립 또는 도내 연구기관· 대학 건소시엄(사업단) 구성을 통한 센터 설립
 - 산업부 '지역산업거점기관지원'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
 - 관계부처(산업부/중기부) 협의(필요 시 예비타당성 조사)를 통한 신규 예산 확보 및 지방비 매칭을 통한 사업 추진
 - O [연구개발] 도내 연구기관·대학과 도내 기업 간 공동 연구 수행
 - 중기부 '지역특화산업육성'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
 - 산업부 '소재부품기술개발'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진

- O [인력 양성] 도내 연구기관, 경남 TP 또는 도내 대학 사업 추진
 - 경상남도 및 시·군 지자체 예산을 통한 사업 추진
- □ 총 사업비 : 470억 원
 - O 인프라 300억 원, 연구개발 150억 원, 인력양성 20억 원
- □ 기대 효과
 - O 경상남도 내 기존 세라믹 코팅 기업의 시장 다변화를 통한 매출 확대
 - 경상남도 내 금속·유기 소재 코팅 기업의 세라믹 코팅 시장 진출을 통한 매출증대 및 부가가치 제고
 - O 경상남도 내 세라믹 코팅 수요 확대 및 수요기업 제품 경쟁력 강화를 통한 지역 제조산업 활성화
 - O 세라믹 코팅 전문인력 양성을 통한 경상남도 내 코팅기업 기술 역량 제고 및 우수인력 공급을 통한 고용 증대

(3) 사업 세부 내용

- □ [인프라] 전주기 맞춤형 세라믹 코팅 기술 양산화 지원 센터 구축 및 운영
 - O Thermal Spray 기반 세라믹 코팅 시스템 구축 및 운영
 - 세라믹 분말원료 기반 Thermal Spray 코팅 장비 구축 및 운영
 - 습식 원료 기반 Thermal Spray 코팅 장비 구축 및 운영
 - 저압환경 Thermal Spray 코팅 장비 구축 및 운영
 - 진공 프로세스 기반 세라믹 코팅 시스템 구축 및 운영
 - PVD 및 CVD 기반 산화물계 코팅 장비 구축 및 운영
 - PVD 복합 코팅소스 장착 코팅 장비 구축 및 운영
 - CVD 기반 비산화물계 코팅 장비 구축 및 운영
 - o 저압/저온 기반 세라믹 코팅 시스템 구축 및 운영
 - 상온 진공 분사 세라믹 코팅 장치 구축 및 운영
 - 저온 분사 세라믹 코팅 장치 구축 및 운영
 - 세라믹 코팅 소재(분말) 합성 및 처리 시스템 구축 및 운영
 - 세라믹 코팅 소재(분말) 합성(건식/습식) 장비 구축 및 운영
 - 세라믹 코팅 소재(분말) 혼합 및 분쇄 장비 구축 및 운영
 - 세라믹 정밀 성형 및 표면(코팅) 후가공 시스템 구축 및 운영
 - 세라믹 복잡형상 소결 및 표면 연마 장비 구축 및 운영
 - 세라믹 고정밀 패턴 가공 장비 구축 및 운영
 - 고출력 레이저 기반 세라믹 정밀 가공 장비 구축 및 운영
 - O 세라믹 코팅 신뢰성 분석 · 평가 시스템 구축 및 운영
 - 세라믹 코팅 부착성능 시험 장치 구축 및 운영
 - 세라믹 코팅 비파괴 성분 분석 장치 구축 및 운영
 - 세라믹 코팅 시험 준비 기구 및 기계적 특성 분석 장치 구축 및 운영

- □ [연구개발] 수요산업 연계형 세라믹 코팅 소재 부품 개발
 - 세라믹 내마모 코팅 적용 수송기기(자동차·항공) 복잡형상 부품 개발
 - 복잡형상용 최적 세라믹 내마모 코팅 소재 개발/선정
 - 세라믹 내마모 코팅층 형성 및 후가공 기술 개발
 - 자동차·항공용 복잡형상 부품 세라믹 내마모 코팅 적용 시제품 개발 및 내마모 신뢰성 평가
 - O 초고온 세라믹 내열 코팅 적용 에너지·항공·선박용 터빈 부품 개발
 - 터빈 부품용 최적 초고온 내열 세라믹 코팅 소재 개발/선정
 - 터빈 부품에 대한 세라믹 코팅 공정 개발
 - 세라믹 코팅 적용 터빈 부품 시제품 개발 및 열차폐 신뢰성 평가
 - O 석유화학·제철 공정용 내산화·내삭마 세라믹 코팅 부품 개발
 - 석유화학·제철 공정용 내산화·내삭마 특성 최적 세라믹 코팅 소재 개발/선정
 - 석유화학·제철 공정용 부품의 대면적/복잡형상 세라믹 코팅 공정 개발
 - 내산화·내삭마 세라믹 코팅 시제품 개발 및 신뢰성 평가
- □ [인력양성] 세라믹 코팅 전문인력 양성
 - O 세라믹 코팅 기술 전문인력 양성
 - 최적 세라믹 코팅 소재 선정 및 코팅 장비 유형별 코팅 기술 교육
 - 고 난이도 세라믹 코팅(초박막, 후막, 복잡형상) 및 후가공 기술 교육
 - O 세라믹 코팅 시험·평가 전문인력 양성
 - 세라믹 코팅 내열·내마모·내삭마 특성 시험·평가 기술 교육
 - 세라믹 코팅 내부식·내산화 특성 시험·평가 기술 교육

다. 경남 세라믹 섬유·복합재료 산업 고도화 사업

(1) 추진배경 및 필요성

- □ 전세계 세라믹 섬유·복합재료 시장의 지속적인 성장이 예상되며, 국내 세라믹 섬유·복합재료 시장 또한 성장 예상되나 전세계 시장 대비 성장 추세는 저조함
 - 전세계 세라믹 섬유·복합재료 시장은 2015년 기준 약 57억 6천만 달러 규모이며, 2024년까지 연평균 13.0% 수준으로 성장할 것으로 예상90)
 - 국내 세라믹 섬유·복합재료 시장은 2015년 기준 330억 원 규모이며, 2020년까지 연평균 5.6% 수준의 성장이 예상⁹¹⁾
- □ 경상남도 내 세라믹 섬유 제조기업 및 세라믹 섬유·복합재료를 활용한 부품 기업이 다수 소재하고 있음⁹²)
 - 세라믹 섬유 제조 기업이 집적해 있으며, 주로 유리섬유 · 암면 등 저 부가가치 제품 중심으로 사업을 추진하고 있음
 - 주요 기업은 ㈜한국화이바, ㈜현대화이바, ㈜한국카본, ㈜KGF, ㈜화신특수 섬유휠타 등임
 - 유리섬유 및 광학용 유리제품 제조업 : 업체 수 15개(전국 대비 12.4%), 고용 기준 입지계수 2.05, 매출액 기준 입지계수 1.73
 - 석면, 암면 및 유사제품 제조업 : 업체 수 25개(전국 대비 12.6%), 고용 기준 입지계수 1.97, 매출액 기준 입지계수 1.68
 - 세라믹 섬유·복합재료 활용 부품 제조기업 또한 다수 소재하고 있으며, 방산·항공분야 부품을 주로 생산하고 있음
 - 주요 기업은 ㈜코오롱데크컴퍼지트, ㈜KCI, ㈜송월테크놀로지, ㈜동성TCS ㈜씨엔리 등임
 - 현재 항공분야의 경우 인증 문제로 도내 세라믹 섬유 기업의 제품 활용은 저조함

^{92) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과

⁹⁰⁾ Advanced Ceramics Market Size, Share & Trend Analysis Report, Grand View Research, 2018

⁹¹⁾ 중소·중견기업 기술로드맵 2018-2020, 중소벤처기업부, 2017

- □ 경상남도에는 견직물(실크) 제조 산업이 국내 최대 규모로 집적해 있으며, 세라믹 섬유 분야로의 사업 확대 가능성이 높음
 - 경상남도의 견직물 제조 산업 업체 수 및 매출액 규모는 전국 시도 중 최대 규모임93)
 - 견직물 직조업 : 업체 수 53개(전국 대비 36.8%), 매출액 1,112억 원(전국 대비 43.9%), 매출액 기준 입지계수 4.64
 - 견직물 제조 기업의 경우 원사 특성상(타 직물 대비 매우 가는 원사) 제직 기술수준이 높아 타 섬유분야(세라믹 섬유)로의 사업 전환·확대 가능성 높음⁹⁴⁾
- □ 경상남도는 항공우주, 국방, 조선해양 등 세라믹 섬유·복합재료의 핵심 수요산업이 집적한 지역임
 - O 항공우주 분야의 경우 국내 최고 수준의 산업 집적 지역으로, 관련분야 완제품 및 부품 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 항공기, 우주선 및 보조장치 제조업 : 7개(전국 대비 16.3%), 입지계수 10.33 항공기용 엔진 제조업 : 1개(전국 대비 50.0%), 입지계수 2.66 항공기용 부품 제조업 : 155개(전국 대비 66.5%), 입지계수 5.31
 - 국방 분야의 경우 전투용 차량, 무기 등의 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 전투용 차량 제조업 : 25개(전국 대비 67.6%), 입지계수 10.2
 무기 및 총포탄 제조업 : 49개(전국 대비 40.8%), 입지계수 2.34
 - 조선해양 분야의 경우 선박 건조 및 선박 구성 부분품 제조 기업이 집적함
 - 표준산업분류 별 경상남도 내 업체 수(전국대비 비중), 매출액 기준 입지계수 강선 건조업: 22개(전국 대비 22.4%), 입지계수 5.66 합성수지선 건조업: 24개(전국 대비 24.0%), 입지계수 2.34 선박 구성부분품 제조업: 1,142개(전국 대비 42.7%), 입지계수 4.64 오락 및 스포츠용 보트 건조업: 7개(전국 대비 12.5%), 입지계수 1.64

^{93) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과

⁹⁴⁾ 경상남도 세라믹 섬유 기업 인터뷰 결과

(2) 사업 개요

□ 사업 목적

- 경상남도 세라믹 섬유 생산기업 및 세라믹 섬유·복합재료 기반 부품 생산기업의 제품 고도화
- 경상남도 기존 섬유 기업(견직물 생산 기업)의 세라믹 섬유 분야 전환 · 다각화
- □ 사업 기간
 - O 2023년 ~ 2027년 (5년간)
- □ 사업 내용
 - O [인프라] 극한환경 세라믹 섬유·복합재료 소재 부품 시험·인증 센터 구축 및 운영
 - O [연구개발] 세라믹 섬유·복합재료 소재 부품 고도화 기술 개발
 - O [인력양성] 세라믹 섬유·복합재료 전문인력 양성
- □ 사업 수행 주체 및 추진 전략
 - O [인프라] 도내 연구기관· 대학 부속 센터 설립 또는 도내 연구기관· 대학 건소시엄(사업단) 구성을 통한 센터 설립
 - 산업부 '지역산업거점기관지원'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
 - 관계부처(산업부/중기부) 협의(필요 시 예비타당성 조사)를 통한 신규 예산 확보 및 지방비 매칭을 통한 사업 추진
 - O [연구개발] 도내 연구기관·대학과 도내 기업 간 공동 연구 수행
 - 중기부 '지역특화산업육성'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
 - 산업부 '소재부품기술개발'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진

- O [인력 양성] 도내 연구기관, 경남 TP 또는 도내 대학 사업 추진
 - 경상남도 및 시·군 지자체 예산을 통한 사업 추진
- □ 총 사업비 : 470억 원
 - O 인프라 300억 원, 연구개발 150억 원, 인력양성 20억 원
- □ 기대 효과
 - O 경상남도 내 기존 세라믹 섬유·복합재료 기업의 제품 고도화를 통한 매출 증대 및 산업규모 성장
 - O 경상남도 내 비 세라믹 섬유(견직물) 기업의 세라믹 섬유 시장 진출을 통한 매출증대 및 부가가치 제고
 - O 경상남도 내 세라믹 섬유·복합재료 수요 확대 및 수요기업 제품 경쟁력 강화를 통한 지역 제조 산업 활성화
 - O 세라믹 섬유·복합재료 전문인력 양성을 통한 경상남도 내 섬유·복합재료 기술 역량 제고 및 우수인력 공급을 통한 고용 증대

(3) 세부 사업 내용

- □ [인프라] 극한환경 세라믹 섬유·복합재료 소재 부품 시험·인증 센터 구축 및 운영
 - O 세라믹 소재 부품 초고온 시험·인증 시스템 구축 및 운영
 - 초고온 환경 기계적 특성(고온 피로/경도/인장 등) 시험 분석 장비 구축 및 운영
 - 초고온 환경 구조적 특성(고온 탄성, 열중량, 열팽창 등) 시험 분석 장비 구축 및 운영
 - O 세라믹 소재 부품 극저온 시험·인증 시스템 구축 및 운영
 - 극저온 환경 기계적 특성(저온 마모/경도/인장/압축 등) 시험 분석 장비 구축 및 운영
 - 극저온 환경 구조적 특성 시험 분석 장비 구축 및 운영
 - O 세라믹 소재 부품 전자기 시험·인증 시스템 구축 및 운영
 - 극한 환경 전기적 특성(전기전도도, 유전율, 체적저항, 전기저항 등) 시험 분석 장비 구축 및 운영
 - 낙뢰 내성 · 정전기 배출 · 전자파 투과/흡수 시험 분석 장비 구축 및 운영
 - O 세라믹 소재 부품 기계적 성능(충돌/폭발 등) 시험·인증 시스템 구축 및 운영
 - 세라믹 소재 부품 충돌 시험 분석 장비 구축 및 운영
 - 세라믹 소재 부품 내화 · 방폭 시험 분석 장비 구축 및 운영

- □ [연구개발] 세라믹 섬유·복합재료 소재 부품 고도화 기술 개발
 - O 친환경 현무암 섬유·복합재료 활용 수송기기 경량 소재 부품 개발
 - 고특성(고 인장강도) 현무암 섬유 생산기술 개발
 - 현무암 섬유 및 열가소성 수지 활용 프리프레그 제조기술 개발
 - 현무암 섬유·복합재료 연속 성형기술 개발
 - 현무암 섬유·복합재료 활용 수송기기 소재 부품 시제품 생산 및 신뢰성 평가
 - O SiC 섬유·복합재료 활용 국방·항공용 고내열 소재 부품 개발
 - 고성능 SiC 섬유 및 SiC/BN 섬유 개발
 - SiC 섬유 직조 및 프리폼 성형기술 개발
 - CMC 치밀화 · 대형화 및 복잡 형상 제조기술 개발
 - CMC 시제품 개발 및 신뢰성 평가
 - O 국방·항공용 저피탐/전자파흡수 세라믹 소재 부품 개발
 - 스텔스 항공기 레이돔용 섬유강화 복합소재 개발
 - X-Band 전자파 흡수 복합소재 및 응용기술 개발
 - 세라믹 섬유·복합재료 저피탐/전자파 흡수 성능 신뢰성 평가
- □ [인력양성] 세라믹 섬유·복합재료 전문인력 양성
 - O 세라믹 섬유·복합재료 생산 및 성형 전문인력 양성
 - 세라믹 섬유/중간재(유리/현무암/SiC 등) 제조 기술 교육
 - 세라믹 복합재료(유리/현무암/SiC 등) 성형·가공 기술 교육
 - O 세라믹 섬유·복합재료 시험·평가 전문인력 양성
 - 세라믹 섬유/중간재 시험·평가 기술 교육
 - 세라믹 복합재료 및 성형 부품 시험·평가 기술 교육

라. 경남 세라믹산업 혁신 지원 사업

- (1) 추진배경 및 필요성
 - □ 전세계 세라믹 시장은 첨단세라믹이 성장을 이끌고 있으나, 경상남도는 전통세라믹 중심으로 산업구조가 형성되어 있음
 - O 2015년 기준 전세계 전통세라믹 시장 규모는 약 1,150억 달러 규모로 2022년까지 연평균 6.2% 성장 예상 되며, 첨단세라믹 시장 규모는 약 570억 달러 규모이나 2022년까지 연평균 10.2% 성장 예상됨%)
 - 경상남도 세라믹 산업 전체 입지계수는 종사자 기준 0.75, 매출액 기준 0.67 수준으로 집적도가 낮게 나타나나, 일부 전통세라믹 중심으로 높은 집적도 확인됨%)
 - 종사자 기준 입지계수 : 고령토 및 기타 점토 광업 3.37, 유리섬유 및 광학용 유리 2.05, 구조용 정형 내화 제품 1.77, 타일 및 유사 비내화 요업제품 2.03, 위생용 도자기 1.71
 - □ 국내 첨단세라믹 산업 수요는 현재 경상남도 산업 기반이 약한 전기·전자부품 중심으로 발생되고 있으며, 현재 경남 주력산업에서는 충분한 수요가 발생되지 않고 있음
 - O 2015년 기준 국내 첨단세라믹 매출의 71.3%가 전기·전자부품 분야에서 발생함97
 - 국내 첨단세라믹 기업의 지역별 비중을 보면 전기·전자산업의 주요 집적지인 수도권(전국 대비 48.5%), 충청권(전국 대비 17.2%), 대경권(전국 대비 16.4%) 비중이 높은 것으로 나타남
 - 경상남도 내 잠재적 세라믹 수요기업을 대상으로 세라믹 수요를 확인한 결과 상당수 기업이 현재 세라믹 활용 수요가 없는 것으로 응답하였으며, 현재 추진중인 사업에 부합하는 세라믹 소재·부품 부족이 주된 이유로 제시됨%)
 - 응답 기업 중 63%가 단기 내 세라믹 활용 수요는 적은 것으로 응답함
 - 세라믹 미활용 사유를 응답한 기업 중 69%가 현재 생산중인 제품에 부합하는 세라믹 소재·부품이 부족하다는 의견을 제시함

⁹⁸⁾ 경상남도 내 세라믹 잠재 수요분야(가공공작기계, 일반기계부품, 자동차, 의료헬스케어, 전기에너지, 전자디스플레이, 조선해양, 항공우주)별 기업 설문조사 결과(㈜날리지웍스, 2018)

⁹⁵⁾ Ceramic Market Analysis(Grand View Research, 2016)

^{96) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과 - 표준산업분류 비금속 광물 광업, 비금속 광물제품 제조업 기준

^{97) 2016} 첨단세라믹산업조사(한국세라믹기술원, 2015)

- □ 경상남도 세라믹 기업은 소기업 중심으로 구성되어 있으며, 기업 자체 역량만으로는 인력확보, 시설투자 및 시장개척에 어려움이 있는 것으로 확인됨
 - 경상남도 세라믹 기업 약 93%가 연매출 100억원 이하의 소기업으로 구성됨99)100)
 - 경남도내 세라믹 기업 설문조사 결과 응답기업의 42%가 인력확보에, 응답기업의 52%가 시설투자 및 판로확보에 어려움이 있는 것으로 나타남¹⁰¹)
- □ 경상남도 세라믹 산업 규모의 증가에도 불구하고 질적 성장을 달성하지 못하는 상황으로, 정책적 지원을 통해 산업 경쟁력을 강화할 필요성 높음102)
 - O 2015년 경상남도 세라믹 기업 총 매출액은 2조 8,887억 원 규모로 2010년 이후 연평균 3.7% 성장함
 - 반면, 2015년 경상남도 세라믹 기업 총 영업이익은 2,223억 원 규모로 2010년 이후 연평균 3.3% 감소함

^{99) 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과 - 표준산업분류 비금속 광물 광업, 비금속 광물제품 제조업 기준 100) 중소기업 기본법에 따르면 광업 및 제조업 세부 업종별 차이가 있으나 매출액 기준 소기업 기준은 80억 ~ 120억 수준임

¹⁰¹⁾ 경상남도 내 세라믹 기업 설문조사 결과 (㈜날리지웍스, 2018)

^{102) 2010, 2015} 경제총조사(통계청) 기준 ㈜날리지웍스 분석 결과 - 표준산업분류 비금속 광물제품 제조업 기준

(2)	사업	개요
-----	----	----

□ ス	ŀ업	목전
-----	----	----

- 경상남도 세라믹 산업 육성의 기반 마련을 위한 산업입지 · 우수인력 확보 및 이를 활용한 세라믹 기업 창업/투자 활성화
- O 경상남도 내 대학·연구기관 보유기술의 기업 이전 및 사업화 활성화를 통한 제품 경쟁력 강화
- O 경상남도 세라믹 수요기업 연계 강화를 통한 안정적 산업기반 형성 및 해외시장 진출 확대

□ 사업 기간

O 2019년 ~ 2028년 (10년간)

□ 사업 내용

- O 경남 세라믹 산업 혁신 기반 조성
 - 세라믹 특화단지 조성, 전문인력 양성 및 기업 육성 지원 추진
- O 경남 세라믹 기술이전·사업화 활성화 지원
 - 세라믹 기업 기술이전·사업화 역량 제고 및 자금 지원
- O 경남 세라믹 수요 연계 및 시장 개척 지원
 - 경남 세라믹 산업 N/W 형성 및 해외시장 개척 지원

□ 사업 수행 주체 및 추진 전략

- O 경남 세라믹 산업 혁신 기반 조성
 - [세라믹 특화단지 조성] 경상남도 및 시·군 지자체 협의를 통한 특화단지 지정
 - * 기 구축(구축 예정) 산업단지 미활용 부지 활용으로 추가 예산 불필요
 - * 육성사업의 인프라 구축, 기업 지원과 연계해 추진

- [세라믹 전문인력 양성] 경남도 대학 내 세라믹 특화 교육과정 개설 및 운영
 - * 교육부 '지역신산업선도인력양성'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
 - * 교육부 '지역선도대학육성'사업 후속사업(기존 사업 일몰 및 재기획 중) 연계를 통한 예산 확보 및 지방비 매칭을 통한 사업 추진
- [세라믹 기업 육성 지원] 경상남도 및 관련 공공기관 연계를 통한 사업 추진
- * 경상남도 자체 예산 활용한 사업 추진
- * 창업지원 공공기관(중소기업진흥공단, 창업진흥원, 창조경제혁신센터 등) 연계를 통한 사업 추진
- O 경남 세라믹 기술이전·사업화 활성화 지원
 - [세라믹 기업 기술이전·사업화 역량 제고] 경상남도 및 경남TP 사업 추진
 - * 경상남도 자체 예산 활용한 사업 추진(경남TP 사업 운영)
 - [세라믹 기술이전·사업화 자금 지원] 경상남도 및 관련 공공기관 연계를 통한 사업 추진
 - * 경상남도 자체 예산 활용한 사업 추진
 - * 산업부 '기술성과활용촉진' 사업 및 기술보증기금 연계를 통한 사업 추진
- O 경남 세라믹 수요 연계 및 시장 개척 지원
 - [경남 세라믹산업 N/W 형성] 경상남도 및 관련 공공기관 연계를 통한 사업 추진
 - * 경상남도 자체예산 활용 사업 추진
 - * 한국산업단지공단 '산업집적지경쟁력강화'사업 후속사업(기존 사업 일몰 예정 및 재기획 중) 연계를 통한 사업 추진
 - [경남 세라믹산업 해외시장 개척] 경상남도 및 관련 공공기관 연계를 통한 사업 추진
 - * 경상남도 자체예산 활용 사업 추진
 - * 한국무역협회, 중소기업진흥공단 추진 사업 연계를 통한 추진

- □ 총 사업비 : 300억 원
 - O 경남 세라믹 산업 혁신 기반 조성 : 총 200억 원
 - O 경남 세라믹 기술이전·사업화 활성화 지원 : 총 50억 원
 - 경남 세라믹 수요 연계 및 시장 개척 지원 : 총 50억 원
- □ 기대 효과
 - 경남 세라믹산업 규모 증대 및 집적 확대를 통해 지역 대표산업으로 성장
 - O 세라믹분야 전문인력 양성 및 기업 우수인력 확보를 통한 고용 활성화
 - O 대학·공공연구기관 보유기술의 활용 및 사업화 증대를 통한 국가 연구개발 생산성 증대에 기여

(3) 세부 사업 내용

- □ 경남 세라믹 산업 혁신 기반 조성
 - O 세라믹 특화단지 조성
 - 경남 서부 세라믹 특화단지 지정(국가혁신클러스터 연계 가능한 기 구축 산업단지의 미분양 부지 활용)
 - 경남 동부 세라믹 특화단지 지정(나노융합 국가산업단지 조성 부지 활용)
 - O 세라믹 전문인력 양성
 - 세라믹 특성화 교육과정 개발 및 운영
 - 수요기관 연계형 인력 양성 및 취업 연계
 - 세라믹 심화 교육과정 개발 및 전문 연구인력(석·박사) 양성
 - O 세라믹 기업 육성 지원
 - 경남 세라믹 기술 창업 · 보육 자금 지원
 - 경남 세라믹 스타기업 지정 및 지원
 - 경남 세라믹 기업 유치 및 투자 촉진 지원(입지 보조, 설비투자 지원 등)
- □ 경남 세라믹 기술이전·사업화 활성화 지원
 - O 세라믹 기업 기술이전·사업화 역량 제고
 - 재직자 대상 기술이전·기술사업화 교육(R&D 기획, 기술이전, 사업화, 마케팅 등)
 - 기술 이전 · 기술사업화 전문인력 양성 및 취업/재취업 연계
 - O 세라믹 기술이전·사업화 자금 지원
 - 경남 세라믹 기업 기술 이전 자금 지원
 - 경남 세라믹 기업 시제품 제작 및 인증 지원
 - 경남 세라믹 기업 마케팅 지원

- □ 경남 세라믹 수요 연계 및 시장 개척 지원
 - O 경남 세라믹산업 N/W 형성
 - 경남 세라믹 산·학·연 교류회 구성 및 운영 지원(세라믹 기업, 수요기업, 대학, 연구기관, 금융·투자기관, 지원기관 등 참여)
 - 경남 세라믹 협동조합 설립 및 운영 지원(설립 비용 지원, 컨설팅 및 운영비용 지원)
 - 경남 세라믹 구매 조건부 자금 지원(소재 구입, 시제품 제작, 마케팅 비용 등)
 - O 경남 세라믹산업 해외시장 개척
 - 국내·외 세라믹 관련 박람회 참가 지원(참가 비용, 항공료, 물류 비용, 통역 비용 등)
 - 경남 세라믹 산업 무역사절단 파견 및 수출상담회 참가 지원(항공료, 통역 비용 등)
 - 경남 세라믹 기업 해외시장 진출 지원(해외 지사화 사업비, 수출 보험, 제품 현지화/마케팅 비용 등)

[그림 72] 경남 세라믹산업 육성 로드맵

3. 경남 세라믹산업 육성 사업 추진방안

□ 인프라 분야 세부사업과 연계 가능한 중앙정부 사업은 산업부 사업을 중심으로 형성되어 있으나, 이 중 다수 사업이 일몰(예정) 되어 있어 후속사업 기획 경과에 대한 지속적 현황 파악이 필요함

[표 56] 인프라 분야 세부사업 연계 대상 중앙정부 사업 현황

분야	사업명	사업 기간	담당 부처	(후속) 사업 기획 기관	(후속) 사업 기획 연구
	국가혁신 클러스터	시범 사업	산업부 지역경제총괄과	한국산업기술 진흥원	지역혁신클러스터 육성사업 추진계획 수립 및 타당성 분석 연구
	소재부품 거점기관 지원	~'18 (일몰)			
	시스템산업 거점기관 지원	~'19 (일몰)	산업부 지역경제총괄과	한국산업기술 진흥원	지역산업거점기관지원 신규 추진방안 연구
	창의산업 거점기관 지원	~'18 (일몰)			
인프라	소재부품산업 기술개발 기반구축	~'17 (일몰)		한국산업기술 평가관리원	소재기술혁신2030 소재부품 R&D사업 예비타당성 조사지원 연구
L'—-4	시스템산업 기술개발 기반구축	~'17 (일몰)	산업부 산업기술정책과		
	창의산업 기술개발 기반구축	~'18 (일몰)	선합기술정역과	한국산업기술 진흥원	지역산업거점기관지원 신규 추진방안 연구
	산업융합 구축	~'18 (일몰)			
	혁신도시 공공기관연계육성	시범 사업	산업부 지역경제총괄과	-	-
	산학융합지구조성	계속	산업부 입지총괄과	-	-

□ 연구개발 분야 세부사업과 연계 가능한 중앙정부 사업은 산업부 사업을 중심으로 형성되어 있으나, 대부분의 사업이 종료 또는 일몰(예정) 되어 있어 후속사업 기획 경과에 대한 지속적 현황 파악이 필요함

[표 57] 연구개발 분야 세부사업 연계 대상 중앙정부 사업 현황

분야	사업명	사업 기간	담당 부처	(후속) 사업 기획 기관	(후속) 사업 기획 연구
	지역특화산업육성	~'19 (일몰)	중기부 지역기업육성과	미확인	미확인
	지역특화산업육성	~'19 (일몰)	산업부 지역경제총괄과	미확인	미확인
	경제협력권산업 육성	~'20	산업부 지역경제진흥과	한국산업기술 진흥원	경제협력권산업육성 후속사업 신규기획 정책연구
연구 개발	소재부품기술개발	~'19 (일몰)	산업부 산업기반총괄과	한국산업기술 평가관리원	소재기술혁신2030 소재부품 R&D사업 예비타당성 조사지원 연구
	산업소재핵심 기술개발	~'19 (일몰)	미확인		
	산업집적지경쟁력 강화	~'21 (일몰)	산업부 입지총괄과	한국산업단지 공단	산업집적지경쟁력강화 사업 재기획 연구
	혁신도시 공공기관연계육성	시범 사업	산업부 지역경제총괄과	-	-

□ 인력양성 분야의 세부사업은 산업부, 교육부, 과기부 사업과 연계하여 추진 가능하며, 기업지원 분야의 세부사업은 산업부 사업을 중심으로 연계 가능함

[표 58] 인력양성 분야 세부사업 연계 대상 중앙정부 사업 현황

분야	사업명	사업 기간	담당 부처	(후속) 사업 기획 기관	(후속) 사업 기획 연구
	산학융합지구조성	계속		-	-
인력 양성	지역선도대학육성	계속	교육부 고등교육정책과	-	-
	지역신산업선도 인력양상	~'19	과기부 미래인재정책과	-	-
	지역특성화산업 육성	계속	산업부 지역경제총괄과	-	-
기업	신성장동력 기술사업화지원	미확인	산업부 산업기술시장과	-	-
지원	산업집적지경쟁력 강화	~'21 (일몰)	산업부 입지총괄과	한국산업단지 공단	산업집적지경쟁력강화 사업 재기획 연구
	스마트공장 보급·확산사업	계속	중기부 기술혁신정책과	-	-

VII. 경남 세라믹산업 육성 기대효과

1. 기대효과 산출 모델

가. 경제적 효과

- (1) 세라믹산업 특화단지 조성에 따른 경제적 효과 산출 모델
 - □ 세라믹산업 특화단지(이하 특화단지) 조성에 따른 경제적 효과는 부가가치 창출 효과와 부가가치 유발 효과의 합으로 도출함
 - 특화단지 조성에 따른 부가가치 창출 효과는 산업단지 입주, 가동 및 신규 투자로 인해 창출될 것으로 예상되는 부가가치를 의미함

특화단지 부가가치 창출 효과 = 특화단지 단위면적당 부가가치 × 특화단지 면적 × 신규 투자율 × 연도별 가동율

- 단위면적당 부가가치는 업종별 부가가치율을 적용하여 단위면적당 부가가치 규모를 추정함
- 특화단지 면적 중 본 사업이 시행되지 않을 경우 투자를 포기 하는 경우만을 신규투자로 고려하여 해당 면적을 도출함
- 산업단지 입주 기업의 가동률을 반영하여 실제 기업의 생산 활동을 반영하고자 함
- 특화단지 조성에 따른 부가가치 유발 효과는 특화단지 내 생산에 따른 부가가치 유발을 의미함

특화단지 부가가치 유발 효과 = 특화단지 생산액 × 부가가치유발계수103)

¹⁰³⁾ 산업연관표 투입산출표(한국은행) 바탕으로 도출

- (2) 인프라 구축 및 연구개발 지원에 따른 경제적 효과 산출 모델
 - □ 인프라 구축 및 연구개발 지원에 따른 경제적 효과는 해당 지원을 통해 신규 출시한 제품으로 인한 부가가치 창출 효과와 부가가지 유발 효과의 합으로 도출함
 - 인프라 구축 및 연구개발 지원을 통해 신규 출시한 제품의 부가가치 창출 효과는 해당 지원으로 인해 창출된 생산액 중 부가가치를 의미함

인프라 및 연구개발 부가가치 창출 효과 = 지원을 통해 신규출시 한 제품 생산액 × 부가가치율¹⁰⁴⁾

- 인프라 구축 및 연구개발 지원을 통해 신규 출시한 제품 생산에 따른 부가가치 창출액을 도출함
- O 인프라 구축 및 연구개발 지원을 통해 신규 출시한 제품의 부가가치 유발 효과는 해당 지원으로 인해 창출된 생산액에 따른 부가가치 유발액을 의미함

인프라 및 연구개발 부가가치 유발 효과 = 지원을 통해 신규출시 한 제품 생산액 × 부가가치유발계수¹⁰⁵⁾

¹⁰⁴⁾ 산업연관표 투입산출표(한국은행) 바탕으로 도출 105) 산업연관표 투입산출표(한국은행) 바탕으로 도출

나. 고용 효과

(1)	세라믹산업	특화단지	조성에	따른	고용	효과	산출	모델
-----	-------	------	-----	----	----	----	----	----

- □ 특화단지 조성에 따른 고용 효과는 직접 고용 효과와 고용유발 효과의 합으로 도출함
 - 특화단지 조성에 따른 직접 고용 효과는 특화단지 입주기업이 직접 고용할 것으로 예상 되는 효과를 의미함

특화단지 직접 고용 효과 = 특화단지 단위면적당 고용인원 × 특화단지 면적

○ 특화단지 조성에 따른 고용 유발 효과는 특화단지 내 생산에 따른 고용 유발을 의미함

특화단지 고용 유발 효과 = 특화단지 생산액 × 고용유발계수106)

- (2) 인프라 구축 및 연구개발 지원에 따른 고용 효과 산출 모델
 - □ 인프라 구축 및 연구개발 지원에 따른 고용 효과는 해당 지원을 통해 신규 출시한 제품으로 인한 고용 유발 효과를 의미함

인프라 및 연구개발 고용 유발 효과 = 지원을 통해 신규출시 한 제품 생산액 × 고용유발계수107)

¹⁰⁶⁾ 산업연관표 투입산출표(한국은행) 바탕으로 도출

¹⁰⁷⁾ 산업연관표 투입산출표(한국은행) 바탕으로 도출

2. 기대효과 산출 결과

가. 경제적 효과

- (1) 특화단지 조성에 따른 경제적 효과 산출 결과
 - □ 특화단지 조성에 따른 경제적 효과는 9,140억 원 규모로 부가가치 창출 효과는 2,729억 원, 부가가치 유발 효과는 6,412억 원 규모임
 - 특화단지 조성에 따른 부가가치 창출 효과는 기존 비금속 광물제품 제조업에 해당하는 기업 정보를 바탕으로 도출함

특화단지 부가가치 창출 효과 = 특화단지 단위면적당 부가가치 × 특화단지 면적 × 신규 투자율 × 연도별 가동율

- 단위면적당 부가가치액은 비금속 광물제품 제조업 기업 평균 매출액 및 해당 기업의 평균 공장용지 면적을 바탕으로 단위면적당 생산액을 산출 한 후 비금속 광물제품 제조업의 부가가치율을 적용함
- 특화단지 면적은 기 구축된 정촌일반산업단지 및 구축예정인 밀양나노국가산업단지의 일정 면적을 활용하여 조성한다는 가정 하에, 각각의 산업단지 면적 중 산업용지 면적의 30% 수준을 적용함¹⁰⁸⁾
- 신규 투자율은 과거 예비타당성조사의 신규투자율을 참고하여 20%를 적용함109)
- 연도별 가동율은 양산어곡산업단지의 사업초기 1년~17년 가동률¹¹⁰)을 적용하고 이후 18~30년까지는 거시적 예측 방법인 ARIMA 방법론을 적용함

^{110) 2017}년 4분기 전국산업단지 현황통계(한국산업단지공단, 2018)

¹⁰⁸⁾ 산업입지정보시스템 단지별 현황, 2018년 9월 기준

¹⁰⁹⁾ 항공산업 및 나노융합 국가산업단지 예타 대응 기술검토 및 세부전략 연구(경남발전연구원, 2015)

[표 59] 단위면적당 부가가치

구분	값
[A] = 비금속 광물제품 제조업 평균 매출액(백만 원) ¹¹¹⁾	13,505
[B] = 비금속 광물제품 제조업 평균 공장용지 면적(m²)112)	9,778
[A] / [B] = [C] = 단위면적당 매출액(백만 원)	1.381
[D] = 비금속 광물제품 제조업 부가가치율 ¹¹³⁾	0.277
[C] × [D] = 단위면적당 부가가치(백만 원)	0.382

[표 60] 특화단지 부가가치 창출 효과

연도	단위면적당 부가가치 (백만 원)	특화단지 면적 (m²)	신규 투자율	연도별 가동율	부가가치 창출 효과 (백만 원)	부가가치 창출 효과 ¹¹⁴⁾ (현재/치, 백만 원)
2029				-	-	-
2030				0.0526	2,229	1,314
2031				0.1908	8,085	4,562
2032				0.364	15,424	8,329
2033				0.6065	25,700	13,279
2034				0.6686	28,331	14,009
2035				0.6992	29,628	14,019
2036				0.6026	25,534	11,562
2037				0.6921	29,327	12,707
2038				0.755	31,992	13,265
2039				0.8096	34,306	13,612
2040				0.8311	35,217	13,372
2041				0.8543	36,200	13,153
2042				0.8543	36,200	12,587
2043	0.382	554,064	0.2	0.8543	36,200	12,045
2044	0.362	334,004	0.2	0.8411	35,640	11,348
2045				0.8295	35,149	10,710
2046				0.8157	34,564	10,078
2047				0.8002	33,907	9,461
2048				0.7853	33,276	8,885
2049				0.7711	32,674	8,348
2050				0.7576	32,102	7,849
2051				0.7447	31,556	7,383
2052				0.7323	31,030	6,948
2053				0.7206	30,534	6,542
2054				0.7093	30,056	6,162
2055				0.6986	29,602	5,808
2056				0.6883	29,166	5,476
2057				0.6785	28,750	5,165
2058				0.6692	28,356	4,875
			계			272,853

¹¹¹⁾ 광업제조업조사(통계청, 2016)

¹¹²⁾ 광공업 공장등록현황(통계청, 2016)

¹¹³⁾ 투입산출표 - 2014 연장표(한국은행, 2016)

¹¹⁴⁾ 예비타당성조사 표준지침(한국과학기술기획평가원)에서 제시한 할인율 4.5%를 적용하였으며, 2018년 기준임

○ 특화단지 조성에 따른 부가가치 유발 효과는 앞서 산출한 부가가치 창출 효과를 바탕으로 부가가치 유발 효과를 도출함

특화단지 부가가치 유발 효과 = 특화단지 생산액 × 부가가치유발계수

- 부가가치 유발 계수는 특화단지 부가가치 창출 효과 도출에 활용된 비금속 광물제품 제조업의 부가가치 유발 계수를 활용함

[표 61] 특화단지 부가가치 유발 효과

구분	값
[A] = 특화단지 부가가치 창출 효과 총합 (현재가치, 백만 원)	272,853
[B] = 비금속 광물제품 제조업 부가가치율 ¹¹⁵⁾	0.277
[A] / [B] = [C] = 특화단지 생산액 (현재가치, 백만원)	985,521
[D] = 비금속 광물제품 제조업 부가가치유발계수	0.651
[C] × [D] = 특화단지 부가가치 유발 효과 (현재가치, 백만 원)	641,184

¹¹⁵⁾ 투입산출표 - 2014 연장표(한국은행, 2016)

- (2) 인프라 구축 및 연구개발 지원에 따른 경제적 효과 산출 모델
 - □ 인프라 구축 및 연구개발 지원에 따른 경제적 효과는 3,809억 원으로 부가가치 창출 효과는 1,722억 원, 부가가치 유발 효과는 2,086억 원 규모임
 - O 인프라 구축 및 연구개발 지원에 따른 경제적 효과는 개별 인프라 및 연구개발 투자 완료 이듬해부터 8년간 경제적 효과가 발생하는 것으로 설정함
 - O 인프라 구축 및 연구개발 지원에 따른 부가가치 창출 효과는 소재부품분야 연구개발 투자 대비 매출액 발생비116)와 관련분야 부가가치율을 활용해 도출함

인프라 및 연구개발 부가가치 창출 효과 = 지원을 통해 신규출시 한 제품 생산액 × 부가가치율

- 인프라 구축 및 연구개발 지원 사업의 연차별 예산에 소재부품분야 연구개발 투자 대비 매출액 발생비 8.53을 곱해 도출한 생산액은 다음과 같음

[표 62] 지원을 통해 신규출시 한 제품 생산액

연도	경남 전통세라믹 산업 경쟁력 강화 사업	경남 세라믹 코팅 산업 육성 사업	경남 세라믹 섬유·복합재료 산업 고도화 사업	인프라	계 (백만 원)
2023	8,530	-	ı	-	8,530
2024	8,530	1	1	-	8,530
2025	8,530	-	-	-	8,530
2026	8,530	15,994	-	31,988	56,511
2027	8,530	15,994	1	31,988	56,511
2028	8,530	15,994	15,994	63,975	104,493
2029	8,530	15,994	15,994	63,975	104,493
2030	8,530	15,994	15,994	63,975	104,493
2031	-	15,994	15,994	63,975	95,963
2032	-	15,994	15,994	63,975	95,963
2033	-	15,994	15,994	63,975	95,963
2034	-	-	15,994	31,988	47,981
2035	-	-	15,994	31,988	47,981

^{116) 2013} 국가연구개발사업 특정평가보고서 - 소재부품기술개발사업(한국과학기술기획평가원, 2013)

- 인프라 및 연구개발 지원을 통해 수혜를 입을 것으로 예상되는 산업 및 해당산업들의 부가가치율은 다음과 같음¹¹⁷)

[표 63] 인프라 및 연구개발 지원 대상 산업 부가가치율

산업명	부가가치율
비금속광물	
기초무기화학물질	
유리 및 유리제품	
도자기 및 요업제품	0.349641
시멘트	
콘크리트제품	
기타 비금속광물제품	

[표 64] 인프라 및 연구개발 부가가치 창출 효과

연도	생산액 (백만 원)	부가가치율	부가가치 창출 효과 (백만 원)	부가가치 창출 효과 ¹¹⁸⁾ (현재가치, 백만 원)
2023	8,530		2,982	2,393
2024	8,530		2,982	2,290
2025	8,530		2,982	2,191
2026	56,511		19,756	13,892
2027	56,511		19,756	13,294
2028	104,493		36,531	23,523
2029	104,493	0.349641	36,531	22,510
2030	104,493		36,531	21,541
2031	95,963		33,548	18,930
2032	95,963		33,548	18,115
2033	95,963		33,548	17,335
2034	47,981		16,774	8,294
2035	47,981		16,774	7,937
	계			172,247

¹¹⁷⁾ 투입산출표 - 2014 연장표(한국은행, 2016) 바탕으로 ㈜날리지웍스 도출

¹¹⁸⁾ 예비타당성조사 표준지침(한국과학기술기획평가원)에서 제시한 할인율 4.5%를 적용하였으며, 2018년 기준임

O 인프라 구축 및 연구개발 지원에 따른 부가가치 유발 효과는 소재부품분야 연구개발 투자 대비 매출액 발생비¹¹⁹)와 관련분야 부가가치 유발계수를 활용해 도출함

인프라 및 연구개발 부가가치 유발 효과 = 지원을 통해 신규출시 한 제품 생산액 × 부가가치유발계수

- 인프라 구축 및 연구개발 지원을 통해 신규 출시한 제품 생산액은 앞에서 도출한 값과 같음
- 인프라 및 연구개발 지원을 통해 수혜를 입을 것으로 예상되는 산업 및 해당산업들의 부가가치 유발 계수는 다음과 같음120)

[표 65] 인프라 및 연구개발 지원 대상 산업 부가가치 유발 계수

산업명	부가가치 유발 계수
비금속광물	
기초무기화학물질	
유리 및 유리제품	
도자기 및 요업제품	0.423482
시멘트	
콘크리트제품	
기타 비금속광물제품	

^{119) 2013} 국가연구개발사업 특정평가보고서-소재부품기술개발사업, 한국과학기술기획평가원, 2013 120) 투입산출표(2014 연장표)를 활용하며 ㈜날리지웍스가 도출한 결과임

[표 66] 인프라 및 연구개발 부가가치 유발 효과

구분	값
[A] = 인프라 및 연구개발 부가가치 총합 (현재가치, 백만 원)	172,247
[B] = 인프라 및 연구개발 지원 대상 산업 부가가치율	0.349641
[A] / [B] = [C] = 지원을 통해 신규 출시한 제품 생산액 (현재가치, 백만원)	492,640
[D] = 인프라 및 연구개발 지원 대상 산업 부가가치 유발 계수	0.423482
[C] × [D] = 특화단지 부가가치 유발 효과 (현재가치, 백만 원)	208,624

나. 고용 효과

- (1) 특화단지 조성에 따른 고용 효과 산출 결과
 - □ 특화단지 조성에 따른 고용 효과는 8,066명으로 직접 고용 효과 1,997명, 고용유발 효과 6,069명으로 도출됨
 - 특화단지 조성에 따른 직접 고용 효과는 전국 일반산업단지 단위면적당 고용인원121) 값을 활용하여 도출함

특화단지 직접 고용 효과 = 단위면적당 고용인원 × 특화단지 면적

- 단위면적당 고용인원은 전국 일반산업단지 단위면적당 고용인원 값을 통해 도출함
- 특화단지 면적은 기 구축된 정촌일반산업단지 및 구축예정인 밀양나노국가산업단지의 일정 면적을 활용하여 조성한다는 가정 하에, 각각의 산업단지 면적 중 산업용지 면적의 30% 수준을 적용함¹²²⁾

[표 67] 특화단지 직접 고용 효과

구분	값
[A] = 전국 일반산업단지 면적 (m²)	242,951,000
[B] = 전국 일반산업단지 고용인원 (명)	875,848
[B] / [A] = [C] = 단위면적당 고용인원 (명/m²)	0.0036
[D] = 특화단지 면적 (m ²)	554,064
[C] × [D] = 특화단지 직접 고용 효과 (명)	1,997

^{121) 2017}년 4분기 전국산업단지 현황통계, 한국산업단지공단, 2018

¹²²⁾ 산업입지정보시스템 단지별 현황, 2018년 9월 기준

○ 특화단지 조성에 따른 고용 유발 효과는 앞서 도출한 특화산업단지 생산액을 바탕으로 도출함

특화단지 고용 유발 효과 = 특화단지 생산액 × 고용유발계수

- 특화단지 생산액은 경제적 효과에서 도출한 값을 활용하였으며, 고용유발계수는 해당 값을 도출하기 위해 활용한 비금속 광물 제품 제조업의 고용유발계수를 활용함123)

[표 68] 특화단지 고용 유발 효과

구분	값
[A] = 특화단지 부가가치 창출 효과 총합 (현재가치, 백만 원)	272,853
[B] = 비금속 광물제품 제조업 부가가치율 ¹²⁴⁾	0.277
[A] / [B] = [C] = 특화단지 생산액 (현재가치, 백만원)	985,521
[D] = 비금속 광물제품 제조업 고용유발계수 (명/백만 원)	0.00616
[C] × [D] = 특화단지 고용 유발 효과 (명)	6,069

¹²³⁾ 투입산출표 - 2014 연장표(한국은행, 2016) 124) 투입산출표 - 2014 연장표(한국은행, 2016)

- (2) 인프라 구축 및 연구개발 지원에 따른 고용 효과 산출 모델
 - □ 인프라 구축 및 연구개발 지원에 따른 고용 유발 효과는 3,034명으로 도출됨
 - 인프라 구축 및 연구개발 지원에 따라 신규 출시된 제품으로 인한 생산액 및 고용 유발 계수를 활용함

인프라 및 연구개발 고용 유발 효과 = 지원을 통해 신규출시 한 제품 생산액 × 고용유발계수

- 인프라 구축 및 연구개발 지원을 통해 신규 출시한 제품 생산액은 경제적 효과에 도출한 값을 활용하였으며, 고용유발계수는 비금속 광물제품 제조업의 고용유발계수를 활용함

[표 69] 인프라 및 연구개발 고용 유발 효과

구분	값
[A] = 지원을 통해 신규출시 한 제품 생산액 (백만 원)	492,640
[B] = 비금속 광물제품 제조업 고용유발계수 (명/백만 원)	0.00616
[A] × [B] = 인프라 및 연구개발 고용 유발 효과	3,034

다. 기대효과 종합

- □ 경남 세라믹산업 육성을 통해 기대할 수 있는 경제적 효과는 1조 2,949억 원 수준이며, 고용 효과는 1만 1,100명 수준임
 - O 세라믹 특화단지 조성에 따른 경제적 효과는 총 9,140억 원 수준이며, 고용효과는 8,066명임
 - O 인프라 및 연구개발 지원에 따른 경제적 효과는 3,809억 원 수준이며, 고용효과는 3,034명임

부록 1. 경남 세라믹산업 육성 세부 수행계획

1. 경남 세라믹 코팅 산업 육성 사업

과제명	전주기 맞춤형 세라믹 코팅 기술 양산화 지원 센터 구축 및 운영	
목적	자동차·기계·국방·항공 등 경남 주력산업 적용 가능한 세라믹 코팅기술 개발·양산화 전주기 지원	
최종목표	○ Thermal spray법 기반 코팅시스템 구축 및 운영 ○ 진공 프로세스 기반 코팅시스템 구축 및 운영 ○ 저압/진공 기반 코팅시스템 구축 및 운영 ○ 세라믹 코팅 소재(분말) 합성 및 처리 시스템 구축 및 운영 ○ 세라믹 정밀 성형 및 표면(코팅) 후가공 시스템 구축 및 운영 ○ 세라믹 코팅 신뢰성 분석 · 평가 시스템 구축 및 운영	
소요기간	총 5 년	
소요예산	총 300 억 원 (연간 60 억 원)	
	사업내용	
1차년도	○ Thermal spray 기반 세라믹 코팅시스템 구축 및 운영 - 세라믹 분말원료 기반 thermal spray 코팅 장비 구축 (대상물 크기 : 최대 2m 급) - 습식 원료 기반 thermal spray 코팅 장비 구축 (대상물 크기 : 최대 2m 급) - 저압환경 thermal spray 코팅 장비 구축 (대상물 크기: 최대 1m 급)	
2차년도	○ 진공 플라즈마 기반 코팅시스템 구축 및 운영 - PVD 및 CVD 기반 산화물계 코팅 장비 구축 (코팅균일도 90% 이상) - PVD 복합 코팅소스 장착 코팅 장비 구축 (3조성 이상 복합조성 확보) - CVD기반 비산화물계 코팅 장비 구축 (코팅균일도 90% 이상)	
3차년도	○ 저압/저온 기반 세라믹 코팅 시스템 구축 및 운영 - 상온 진공 분사 세라믹 코팅 장비 구축 - 저온 분사 세라믹 코팅 장치 구축	
4차년도	○ 세라믹 코팅 소재(분말) 합성 및 처리 시스템 구축 및 운영 - 세라믹 코팅 소재(분말) 합성(건식/습식) 장비 구축 및 운영 - 세라믹 코팅 소재(분말) 혼합 및 분쇄 장비 구축 및 운영 ○ 세라믹 정밀 성형 및 표면(코팅) 후가공 시스템 구축 및 운영 - 세라믹 복잡형상 소결 및 표면 연마 장비 구축 및 운영 - 세라믹 고정밀 패턴 가공 장비 구축 및 운영 - 고출력 레이저 기반 세라믹 정밀 가공 장비 구축 및 운영	
5차년도	○ 세라믹 코팅 신뢰성 분석·평가 시스템 구축 및 운영 - 코팅품 부착성능 시험장치 구축 (국내외 표준시험법에 준하는 평가사양) - 코팅품 비파괴 성분 분석장치 구축 (정성 및 정량분석장치 구분 구축) - 코팅품 시험준비기구 및 기계적 특성 분석장치 구축 (경도, 조도 시험기 등)	

과제명	수요산업 연계형 세라믹 코팅 소재 부품 개발			
세부 과제명	세라믹 내마모성 코팅적용 수송기기	세라믹 내마모성 코팅적용 수송기기(자동차·항공) 복잡형상 부품 개발		
	목표	달성수준		
최종 목표	복잡형상 부품적용 세라믹 내마모 코팅 소재 개 발	기존 부품 대비 내마모성 200% 향상		
및 달성 수준	복잡형상 부품적용 세라믹 내마모 코팅 제조 및 후가공 기술 개발	복잡형상 코팅균일도 80% 이상 달성		
	자동차·항공용 복잡형상 부품 세라믹 내마모 코팅 적용 시제품 개발 및 내마모 신뢰성 평가	산업체 참조수준 평가기술 확보		
소요기간	총 5	5 년		
소요예산	총 50 억 원 (연간 10 억원)		
	사업내용			
1차년도	○ 복잡형상 부품적용 세라믹 내마모 코팅 소재 개발 (Phase I) ○ 복잡형상 부품적용 세라믹 내마모 코팅 제조 기반기술 개발			
2차년도	○ 복잡형상 부품적용 세라믹 내마모 코팅 소재 개발 (Phase II) ○ 복잡형상 부품적용 세라믹 내마모 코팅 제조 기술 개발 ○ 복잡형상 코팅 후가공 기술 개발			
3차년도	○ 복잡형상 부품적용 맞춤형 세라믹 내마모 코팅 소재 개발 ○ 복잡형상 부품적용 맞춤형 세라믹 내마모 코팅 제조 기술 개발 ○ 복잡형상 맞춤형 코팅 후가공 기술 개발			
4차년도	○ 복잡형상 부품 세라믹 내마모 코팅 적용 시제품 제조 공정기술 개발 ○ 코팅 내마모성 평가 기반기술 개발			
5차년도	○ 복잡형상 부품 맞춤형 세라믹 내마모 코팅 시제품 제조 공정기술 개발 ○ 코팅 내마모성 평가기술 고도화			

과제명	수요산업 연계형 세라믹 코팅 소재 부품 개발		
세부 과제명	초고온 세라믹 내열 코팅 적용 항공·선박·에너지산업용 터빈 부품 개발		
	목표	달성수준	
*I & D ==		고온 내구성 : 25,000 EOH 이상	
최종 목표 및 달성 수준	고온 산업환경용 열·환경차폐 세라믹	열차폐성 : △T 150 이상	
20 12	코팅소재 및 공정기술 개발	열전도성 : 1.0 W/m·K 이하	
		침식 저항성 : 0.03 mg/cm²·hr	
소요기간	총	5 년	
소요예산	총 50 억 원 (연간 10 억원)	
사업내용			
1차년도	○ 저열전도성 코팅 신조성 및 구조제어 기술 개발 ○ 차세대 용사 기반 코팅 제조기술 개발		
2차년도	○ 진공증착기술 기반 후막형 내열/내화학 코팅기술 개발 ○ 열·화학 방호 하이브리드형 신코팅 소재 및 제조기반기술 개발 ○ 코팅품 열/기계/화학적 물성 측정기술 개발 ○ 코팅공정 연관 전산모사 기반기술		
3차년도	○ 열·화학 방호 하이브리드형 신코팅 소재기술 개발 ○ 열·화학 방호 하이브리드형 신코팅 제조기술 개발		
4차년도	○ 실형상품 대응 수준 열·화학 방호 코팅소재 및 제조기술 고도화 ○ 코팅품 열/기계/화학적 물성 측정기술 고도화		
5차년도	○ 시제품 대응 수준의 공정, 평가, 전산모사 기술 개발		

과제명	수요산업 연계형 세라믹 코팅 소재 부품 개발		
세부 과제명	석유화학·제철 공정용 내산화·내삭마 세라믹 코팅부품 개발		
	목표	달성수준	
최종 목표	석유화학·제철 공정부품용 내산화·내삭마 세라믹 코팅 소재 및 제조기술 개발	기존 부품 대비 내산화·내삭마성 200% 향상	
및 달성 수준	석유화학·제철 공정부품용 대면적/복잡형상 세라믹 내산화·내삭마 코팅 기술 개발	대면적 코팅 균일도 80% 이상	
	내산화·내삭마 세라믹 코팅 시제품 개발 및 신뢰성 평가	산업체 참조수준 평가기술 확보	
소요기간	총 !	5 년	
소요예산	총 50 억 원 (연간 10 억원)	
	사업내용		
1차년도	○ 석유화학·제철 공정부품용 세라믹 내산화·내삭마 코팅 소재 개발 (Phase I) ○ 석유화학·제철 공정부품용 세라믹 내산화·내삭마 코팅 제조 기반기술 개발		
2차년도	○ 석유화학·제철 공정부품용 세라믹 내산화·내삭마 코팅 소재 개발 (Phase II) ○ 석유화학·제철 공정부품용 세라믹 내산화·내삭마 코팅 제조 기술 개발		
3차년도	○ 석유화학·제철 공정부품용 맞춤형 세라믹 내산화·내삭마 코팅 소재 개발 ○ 석유화학·제철 공정부품용 맞춤형 세라믹 내산화·내삭마 코팅 제조 기술 개발 ○ 석유화학·제철 공정부품용 맞춤형 내산화·내삭마 코팅 후가공 기술 개발		
4차년도	○ 석유화학·제철 공정부품용 세라믹 내산화·내삭마 코팅 적용 시제품 제조 공정기술 개발 ○ 코팅 내산화·내삭마 평가 기반기술 개발		
5차년도	○ 석유화학·제철 공정부품 맞춤형 세라믹 내산화·내삭마 코팅 시제품 제조 공정기술 개발 ○ 코팅 내산화·내삭마 평가기술 고도화		

과제명	세라믹 코팅 전문인력 양성		
목적	세라믹 코팅 생산현장 인력의 기술 전문성 제고 및 세라믹 연구·개발 인력의 시험평가 전문성 제고		
최종목표	○ 세라믹 코팅 생산기능인력 직무능력 향상 : 교육이수 인력 총 300명(연 10개 과정) ○ 세라믹 코팅 기술전문가 직무능력 향상 : 교육이수 인력 총 300명(연 10개 과정) ○ 세라믹 코팅 시험·평가 전문인력 양성 : 교육이수 인력 총 100명(연 20명)		
소요기간	총 5 년		
소요예산	총 20 억 원 (연간 4 억 원)		

사업내용

- 세라믹 코팅 기술 전문인력 양성
 - 세라믹 코팅 생산기능인력 직무능력 향상 교육 프로그램 개발 예시) 고 난이도 세라믹 코팅(초박막, 후막, 복잡형상) 및 후가공 기술 교육
 - 세라믹 코팅 기술전문가 직무능력 향상 교육 프로그램 개발 예시) 최적 세라믹 코팅 소재 선정 및 코팅 장비 유형별 코팅 기술 교육
 - 세라믹 코팅 기술 전문강사 확보
 - 경상남도 내 세라믹 관련 대학 기관 및 기업 연계를 통한 전문인력 양성
- 세라믹 코팅 시험·평가 전문인력 양성
 - 세라믹 소재·부품 인증, 시험·평가 관련 교육 프로그램 개발 예시) 세라믹 코팅 내열·내마모·내삭마 특성 시험·평가 기술 교육 세라믹 코팅 내부식·내산화 특성 시험·평가 기술 교육
 - 세라믹 소재·부품 인증, 시험·평가 분야 전문강사 확보
 - 경상남도 내 세라믹 관련 대학 및 기관 간 연계를 통한 전문인력 양성
 - 전문인력 양성 프로그램 공동 운영체계 구축

2. 경남 세라믹 섬유·복합재료 산업 고도화 사업

과제명	극한환경 세라믹 섬유·복합재료 소재 부품 시험인증 센터 구축 및 운영		
목적	국내 최초 극한환경 대응 인프라 구축을 통한 항공우주, 방위산업 분야 융복합 세라믹소재 시험분석 및 인증 지원 체계 구축		
최종목표	○ 세라믹 소재 부품 초고온 시험·인증 시스템 구축 및 운영 ○ 세라믹 소재 부품 극저온 시험·인증 시스템 구축 및 운영 ○ 세라믹 소재 부품 전자기 시험·인증 시스템 구축 및 운영 ○ 세라믹 소재 부품 전자기 시험·인증 시스템 구축 및 운영 ○ 세라믹 소재 부품 기계적 성능(충돌/폭발 등) 시험·인증 시스템 구축 및 운영		
소요기간	총 5 년		
소요예산	총 300 억 원 (연간 60 억 원)		
	사업내용		
1차년도	○ 세라믹 소재 부품 초고온 시험·인증 시스템 구축 - 초고온 환경 기계적 특성(고온 피로/경도/인장 등) 시험 분석 장비 구축 (Heat-UTM(2종), 고온피로, 고온경도) - 초고온 인장, 고온경도, 열중량 및 열팽창계수 KOLAS 인증 확대		
2차년도	○ 세라믹 소재 부품 초고온 시험·인증 시스템 구축 - 초고온 환경 구조적 특성(고온 탄성, 열중량, 열팽창 등) 시험 분석 장비 구축 (고온탄성률, FE-EPMA, Nano-CT, 초고온 DSC) - 초고온 열중량 및 열팽창계수 KOLAS 인증 확대		
3차년도	○ 세라믹 소재 부품 극저온 시험·인증 시스템 구축 - 극저온 환경 기계적 특성(저온 마모/경도/인장/압축 등) 시험 분석 장비 구축 (Cryo-UTM, 저온내마모, 저온경도) - 극저온 환경 구조적 특성 시험 분석 장비 구축(Cryo-FE-SEM, Icing Wind Tunnel) - 저온열팽창, 저온인장 및 압축강도, 저온마모 시험 KOLAS 인증 확대		
4차년도	○ 세라믹 소재 부품 전자기 시험·인증 시스템 구축 - 극한 환경 전기적 특성 시험 분석 장비 구축(전기전도도, 유전율, 체적저항, 전기저항) - 초고온 유전율 및 전기특성 KOLAS 인증 확대 - 고전력용 세라믹소재 단결정 분석법 신규 국제 표준화 추진 - 낙뢰 내성ㆍ정전기 배출ㆍ전자파 투과/흡수 시험 분석 장비 구축		
5차년도	○ 세라믹 소재 부품 기계적 성능(충돌/폭발 등) 시험·인증 시스템 구축 및 운영 - 세라믹 소재 부품 충돌 시험 분석 장비 구축 및 운영 - 세라믹 소재 부품 내화·방폭 시험 분석 장비 구축 및 운영		

과제명	세라믹 섬유·복합재료 소재 부품 고도화 기술 개발		
세부 과제명	친환경 현무암 섬유·복합재료 활용 수송기기(자동차·철도·선박) 경량 소재 부품 개발		
	목표	달성수준	
	Basalt 섬유의 기초물성 파악	섬유인장강도 2000 MPa 이상	
	Basalt 섬유와 고분자 수지 간 wetting 및 interfacial property 연관성 규명	수지함침시간 향상 필요 (10m/s 속도) 계면전단강도 향상 필요 (60 MPa)	
최종 목표 및 달성 수준	Basalt 섬유를 이용한 고분자 복합재료 최적의	새로운 성형방법 도출	
	성형 방법 도출	기존 방식들과 비교하여 성형시간 향상 인장, 굴곡강도: 400 MPa 이상	
	Basalt/Polymer 복합재료를 이용한 판넬 제작	내충격성 실험: 500 J/m 이상 내충격	
	Basalt/Polymer 복합재료에 대한 내구성 확인	400도 조건에서 복합재료 내열성 확보	
소요기간	총 5 년		
소요예산	총 50 억 원 (연간 10 억원)		
사업내용			
1차년도	○ Basalt 섬유의 기초물성 파악 - Basalt 섬유 spinning 후에 섬유 미세파괴 거동을 파악하기 위한 기초실험 - Basalt 섬유 인장 및 Weibull distribution을 통한 분석 - 인장강도에 대한 편차가 작은 basalt 섬유 필요		
2차년도	○ Basalt 섬유와 고분자 수지 간 wetting 및 interfacial property 연관성 규명 - Basalt와 맞는 최적의 열가소성(폴리이미드, 폴리카보네이트) 및 열경화성 수지(에폭시, 페놀) 선정 - 리스트한 수지와 basalt 섬유 간 계면물성 및 wetting 물성 평가 필요: wetting 물성을 통하여 성형 속도 개선가능. 계면물성을 통하여 복합재료 내구도 파악 가능		
3차년도	○ Basalt 섬유를 이용한 고분자 복합재료 최적의 성형 방법 도출 - 최적의 수지를 이용하여 다양한 성형공정 방식을 이용하고, 최적의 성형공정 확인 - 기존에 알려진 prepreg 및 VARTM 방식 뿐만 아니라, 독자적인 성형공정방법을 도출하고 기존 유리섬유/고분자 복합재료 성형시간과 비교 및 향상 기대		
4차년도	○ Basalt/Polymer 복합재료를 이용한 자동차 판넬 제작 - 차량에 적용되기 위한 다양한 물성 목표치 달성이 필요 - Basalt/고분자 복합재료를 이용한 자동차 차체 형상 제조 및 공정 최적화		
5차년도	○ Basalt/Polymer 복합재료에 대한 내구성 실험 - 자동차로 오는 위험(고충격 및 고열 등)으로부터 버틸 수 있는 basalt/고분자 복합재료 - 환경적 특성뿐만 아니라 기계적 피로 특성에 대한 내구성 확보		

과제명	세라믹 섬유·복합재료 소재 부품 고도화 기술 개발			
세부 과제명	SiC 섬유·복합재료 활용 국방·항공용 고내열 소재 부품 개발			
	목표	달성수준		
	고성능 SiC 섬유 및 SiC/BN 섬유 개발	결정성 BN 코팅두께 500nm 이상 SiC섬유 직경균일도 : ± 10%		
최종 목표	SiC섬유 직조 및 프리폼 성형 기술 개발	Φ0.5 x 0.5 m 이상 프리폼 제작		
ᅵᅬᆼ교 ᅵ 및	PIP/CVI 융합공정을 통한 CMC 치밀화	CMC 기공률 : 10% 미만		
달성 수준	및 대형화 기술개발	CMC 대형화 : Φ0.5 x 0.5 m 이상		
	1400℃ 자가 치유 기구 확립을 통한	1400℃ 인장 강도 : 100MPa		
	고온 성능 확보	고온 fatigue 저항성 : 1000회 (1400℃, 80MPa)		
		1,900℃ 20초 이상 유지후 무게변화율 1wt% 미만		
	CMC 초고온 물성평가 기술개발	굽힘강도 350Mpa 이상		
소요기간	총 5 년			
소요예산	총 50 억 원 (연간 10 억원)			
사업내용				
1차년도	○ Self-assemble 공정 개발을 통한 프리폼-그래핀 코팅 및 BN 코팅 공정 개발 - 합성 공정조건 개선을 통한 그래핀소재 두께 및 너비 제어 - 폴리카보실란 / SiC 섬유에 증착 및 코팅이 가능한 맞춤형 그래핀 표면 기능화 기술개발 ○ 고성능 SiC 필러 대량 합성 기술 개발 및 고성능 SiC계 프리세라믹 폴리머 합성 기술 개발			
2차년도	○ BN coating 균일화 기술개발 - 그래핀 및 SiC섬유 표면 기능화 공정 확보를 통한 BN 코팅층 균일도 향상 기술개발 ○ CVD 공정을 통한 SiC섬유/프리폼 균일 BN코팅 및 결정성장 기술개발 ○ 전산모사를 통한 1400℃ 자가 치유 신조성 도출 ○ 전산모사를 통한 1400℃ 급 EBC용 신조성 도출			
3차년도	 ○ PIP/CVI 공정 조건 확립 - 프리커서 레올로지별 PIP 공정 조건 확보 - CVI 공정조건에 따른 및 치밀화 거동 확인 ○ PIP 시간 단축 공정 (20일 → 8일) 및 복잡형상 CMC 제조 공정 개발 ○ 1400℃ 자가 치유 신조성 적용 판상 CMC 제조 및 1400℃ 급 EBC 코팅 적용 			
4차년도	 ○ PIP/CVI 공정 최적화를 통한 Ø500 × 500 mm 이상급 CMC 치밀화 조건 확립 - 프리폼 대형화에 따른 최적 chop 사이즈, 균일 분산 조건확립 및 열처리 공정 최적화 - 기공률 최소화를 위한 최적 공정조건 확보 (PIP: 프리커서 레올로지 및 공정조건, CVI: 프리폼 내부 치밀화를 위한 공정조건) ○ 1400℃ 자가 치유 신조성 적용 복잡 형상 CMC 제조 및 1400℃ 환경에서의 특성 평가 및 분석 			
5차년도	○ 제조된 CMC 특성 및 신뢰성 평가 기술개발 - 두께 및 크기 증가에 따른 치밀화 공정조건별 실험조건 확보 - BN coating층 균일화, 두께, 밀도 제어에 따른 CMC 물성변화 (고온내산화성, 밀도, 강도, 등) 평가			

과제명	세라믹 섬유·복합재료 소재 부품 고도화 기술 개발				
세부 과제명	국방·항공용 저피탐/전자파흡수 세라믹 소재 부품 개발				
	목표		달성수준		
최종 목표 및 달성 수준	스텔스 항공기 레이돔 스킨용 기능성 비강도 섬유강화 복합소재 개발		유전율: 3.8 이하 (10GHz) 전파투과율: 70%이상 (9.5~10.5GHz) Hardness (Mohs scale): 6.5이상 열전도도: 1.5 W/mK 이하		
	X-band 전자파흡수 복합소재 및 응용기술 개발		흡수능@중심주파수 : >30dB 흡수능@X-band(8~12GHz) : >7dB 대역폭 : >2.5GHz		
소요기간	총 5 년				
소요예산	총 50 억 원 (연간 10 억원)				
사업내용					
	스텔스 항공기 레이돔 스킨	- 레이돔 스킨용 기능성 섬유강화 복합소재 설계 - 기능성 섬유 형상 및 결정성 제어기술 개발			
1차년도	X-band 전자파흡수 복합소재	- X-band용 전자파 흡수체 소재 설계 - 전자기파 흡수 매카니즘 해석 및 나노입자 형상 제어기술 개발 - X-band용 전자파 흡수체 도료 배합비 설계			
	스텔스 항공기 레이돔 스킨	- 스킨용 prepreg 복합소재 제조 기술 개발 - 주파수 선택 투과면(FSS) 기본 패턴 설계			
2차년도	X-band 전자파흡수 복합소재	- X-band용 전자파 흡수체 소재 합성 - 전자기파 흡수체 형상에 따른 흡수능 시뮬레이션 - 나노입자 형상 제어를 통한 흡수 특성 향상방향 연구			
2±114 ⊏	스텔스 항공기 레이돔 스킨	- FSS 패턴 제작 공정 개발 - Prepreg 경화 조건 및 스킨 제조공정 최적화			
3차년도	X-band 전자파흡수 복합소재				
4차년도	스텔스 항공기 레이돔 스킨	- 레이돔 구조를 고려한 최적의 FSS 패턴 설계 및 FSS 제작공정 개발 - 최적 FSS 패턴 설계를 위한 레이돔 구성 소재 물성 평가 - 기능성 섬유복합체 제작 공정 개발			
	X-band 전자파흡수 복합소재	- 전자파 흡수특성 향상을 위한 유전체 및 자성체 복합화 개발 - X-band용 전자파 흡수 도료 시료 제조 및 특성평가 - 흡수체 도료의 신뢰성 평가방안 수립 및 평가			
5차년도	스텔스 항공기 레이돔 스킨	스텔스 항공기 - FSS 레이돔 시편 제작 기술 개발 - FSS 레이돔 내화경성 및 기본 물성 평가			
	X-band 전자파흡수 복합소재	- 흥수체 특성 취접한 모덱 해석 본한소재 취절한 및 제조기숙 확립			

과제명	세라믹 섬유·복합재료 전문인력 양성	
목적	세라믹 섬유·복합재료 생산현장 인력의 기술 전문성 제고 및 연구·개발 인력의 시험평가 전문성 제고	
최종목표	○ 세라믹 섬유·복합재료 생산기능인력 직무능력 향상 : 교육이수 인력 총 300명(연 10개 과정) ○ 세라믹 섬유·복합재료 기술전문가 직무능력 향상 : 교육이수 인력 총 300명(연 10개 과정) ○ 세라믹 섬유·복합재료 시험·평가 전문인력 양성 : 교육이수 인력 총 100명(연 20명)	
소요기간	총 5 년	
소요예산	총 20 억 원 (연간 4 억 원)	

사업내용

- 세라믹 섬유·복합재료 기술 전문인력 양성
 - 세라믹 섬유·복합재료 생산기능인력 직무능력 향상 교육 프로그램 개발 예시) 세라믹 복합재료(유리/현무암/SiC 등) 성형·가공 교육
 - 세라믹 섬유·복합재료 기술전문가 직무능력 향상 교육 프로그램 개발 예시) 세라믹 섬유/중간재(유리/현무암/SiC 등) 제조 기술 교육
 - 세라믹 섬유·복합재료 기술 전문강사 확보
 - 경상남도 내 세라믹 관련 대학 기관 및 기업 연계를 통한 전문인력 양성
- 세라믹 섬유·복합재료 시험·평가 전문인력 양성
 - 세라믹 소재·부품 인증, 시험·평가 관련 교육 프로그램 개발 예시) 세라믹 섬유/중간재 시험·평가 기술 교육 세라믹 복합재료 및 성형 부품 시험·평가 기술 교육
 - 세라믹 소재·부품 인증, 시험·평가 분야 전문강사 확보
 - 경상남도 내 세라믹 관련 대학 및 기관 간 연계를 통한 전문인력 양성
 - 전문인력 양성 프로그램 공동 운영체계 구축

3. 경남 전통세라믹 산업 경쟁력 강화 사업

과제명	스마트팩토리 기반 전통세라믹 공정 고도화	
목적	경상남도 전통세라믹 공정 개선·고도화를 통한 품질 개선 및 제품 경쟁력 제고	
최종목표	○ 스마트팩토리 적용 가능한 전통세라믹 특화 스마트 생산 공정 개발 : 총 4개 기업 ○ 전통세라믹 대표 분야별 스마트팩토리 시범공장 구축 및 운영 : 총 4개 기업 ○ 전통세라믹 기업 스마트팩토리 도입 : 총 20개 기업	
소요기간	총 4 년	
소요예산	총 84 억 원 (연간 21 억 원)	
사언내용		

사업내용

- 전통세라믹 기업 품질 혁신 및 제품 고부가가치화를 위한 스마트 생산 공정 개발 지원
 - 스마트팩토리 연계 가능한 제품 개발 체계 및 성능품질 평가 체계 개발
 - 스마트팩토리 도입 및 생산공정 고도화를 위한 설비·기반기술 개발
 - 스마트팩토리 통합 운영을 위한 솔루션(S/W 패키지) 개발
- 전통세라믹 제품 개발 및 공정 고도화 위한 스마트팩토리 시범공장 지원
 - 경남 전통세라믹 대표분야별(위생도기, 타일, 내화물 등) 스마트팩토리 시범공장 구축 지원
 - 관련 분야 기업 정보 공유 및 벤치마킹 지원
- 전통세라믹 기업 스마트팩토리 도입 지원
 - 현장자동화, 공장운영 및 실시간 최적화 분야 스마트팩토리 도입 지원
 - 제품개발 분야 스마트팩토리 도입 지원
 - 공급사슬 및 기업자원 관리 최적화 분야 스마트팩토리 도입 지원

과제명	전통세라믹 제품 고부가가치화 제품 개발		
세부 과제명	경남 고령토 활용 확대를 위한 고령토	품질 개선 및 고부가가치화 기술 개발	
최종 목표 및 달성 수준	목표	달성수준	
	나노 분쇄 및 합성 기술 개발	80Nano 대량 분쇄기술 개발 금속입자 Nano 기술개발	
	석유화학 촉매 활용기술 개발	PNB 반응촉매개발 PTMEG 중합촉매개발	
	이산화탄소 포집력 및 분리·선택성	CO ₂ 포집력: 5mmol/g 이상 CO ₂ 흡·탈착 recyclability: 5회, 90% 이상	
		흡착제 분리막 CO2 선택성: 90% 이상	
소요기간	총 4 년		
소요예산	총 40 억 원 (연간 10 억원)		
	사업내용		
1차년도	○ 개발요소 선정 및 특성분석 - KAOLIN 성분 분석 및 DATA 확보 - KAOLIN의 특성 파악		
2차년도	 ○ 가공기술 개발 - KAOLIN 정제방법 개발 - KAOLIN 성형기술 개발 ○ 석유화학 촉매 활용기술 개발 - PNB 반응촉매개발 		
3차년도	○ 석유화학 촉매 활용기술 개발 - PTMEG 중합촉매개발 ○ 고령토 이용 이산화탄소 포집·전환 기술에 적합한 융복합 다기능성 나노신소재 개발		
4차년도	○ 고령토 기반 나노신소재의 촉매반응 기반 이산화탄소 전환 융합 기술 개발 ○ 고령토 활용 다기능성 세라믹 나노신소재 기반 탄소전환공정 융합 기술 개발 ○ 고령토 융복합 신소재 기반 CO/CO2 및 N2/CH4 분리·농축용 흡착제 분리막 개발 ○ 실제 산업공정발생 부산물 (CO/CH4/CO2/N2) 에 대한 탄소전환 기술 실효성 평가		

과제명	전통세라믹 제품 고특	부가가치화 제품 개발				
세부 과제명	전통세라믹(도기/타일) 소재 및 표면 개선을 통한 고부가가치 제품 개발 지원					
	목표	달성수준				
+15		굽힘강도 : 150MPa 이상				
최종 목표 및 달성 수준	고강도·고경도·경량화 소재 및 유약 내 나노금속	경량화율 : 30% 이상				
20 12	발색을 위한 공정 기술 개발	표면경도 : 8.5GPa 이상				
		나노발색기술 : Optical Density 1.0 이상				
소요기간	총 4	4 년				
소요예산	총 40 억 원 (연간 10 억원)				
	사업내용					
1차년도	○ 응력강화 및 결정화 제어를 이용한 전통세라믹	소재 강화기술 개발				
2차년도	○ Low shear thickening 기술 및 열간변형 제어을 통한 경량화 기술 개발 ○ 고온 소성 적용이 가능한 유약 내 나노금속 발색기술 개발					
3차년도	○ 기업연계를 통한 고강도·경량 전통세라믹 소재 상용화 기술 개발					
4차년도	○ 디지털 디자인 기술을 적용한 도자제품 디자인 ○ 기업연계를 통한 개발 소재 및 공정 기술을 적					

4. 경남 세라믹산업 혁신 지원 사업

과제명	경남 세라믹 산업 혁신 기반 조성
목적	경상남도 세라믹 산업 육성의 기반 마련을 위한 산업입지·우수인력 확보 및 이를 활용한 세라믹 기업 창업/투자 활성화
최종목표	○ 경상남도 내 2개 세라믹 특화단지 지정 ○ 세라믹 특화교육 인력 양성(총 500명) 및 수요기관 연계 인력 양성(총 100명) ○ 세라믹 기업 이전/투자 활성화(총 50개 社) ○ 세라믹 창업 및 보육 지원(총 80개 社)
소요기간	총 10 년
소요예산	총 200 억 원 (연간 20 억 원)

사업내용

- 세라믹 특화단지 조성
 - 경남 서부 세라믹 특화단지 지정(국가혁신클러스터 연계 가능한 기 구축 산업단지의 미분양 부지 활용)
 - 경남 동부 세라믹 특화단지 지정(나노융합 국가산업단지 조성 부지 활용)
- 세라믹 전문인력 양성
 - 경상남도 세라믹산업 고도화를 위한 기초 및 특성화 교육 Track 수행 (5개 분야별 특성화 교육과정 개발 및 운영, 분야별 연 1건의 단기 특성화 교육프로그램 개발 및 운영)
 - 지역 특성화 인재 양성을 위한 지역 내 전문가 초청 강연 및 전문가별 현장 견학 프로그램 운영을 통한 환류식 교육 진행(특성화 분야별 10건의 환류식 교육 프로그램 개발 및 운영)
 - 경남 세라믹산업 특성화 교육을 위한 장비 등 인프라스트럭처 활용 교육 (특성화분야별 교육장비 구축 및 장비별 활용교육 프로그램 개발)
- 세라믹 기업 육성 지원
 - 세라믹기업 지방이전 촉진(토지매입가액의 10~40%, 설비투자금액의 8~24% 지원)
 - 세라믹기업 투자유치 촉진(입지보조금 5억원 / 시설, 고용, 교육훈련, 이전보조금 각 2억원 한도 내 지원)

과제명	경남 세라믹 기술이전 · 사업화 활성화 지원					
목적	경상남도 내 대학·연구기관 보유기술의 기업 이전 및 사업화 활성화를 통한 제품 경쟁력 강화					
최종목표	○ 기술이전·기술사업화 전문인력 양성(교육이수 인력 총 500명) ○ 기술 이전 자금 지원(총 50개 社) ○ 시제품 제작·인증 및 마케팅 지원(총 100개 社)					
소요기간	총 10 년					
소요예산	총 50 억 원 (연간 5 억 원)					
사업내용						

- 세라믹 기업 기술이전·사업화 역량 제고
 - 재직자 대상 기술이전·기술사업화 교육(R&D 기획, 기술이전, 사업화, 마케팅 등)
 - 기술 이전 · 기술사업화 전문인력 양성 및 취업/재취업 연계
- 세라믹 기술이전·사업화 자금 지원
 - 경남 세라믹 기업 기술 이전 자금 지원(기업당 2천만원 한도)
 - 경남 세라믹 기업 시제품 제작 및 인증 지원(기업당 2천만원 한도)
 - 경남 세라믹 기업 마케팅 지원(기업당 2천만원 한도)

과제명	경남 세라믹 수요 연계 및 시장 개척 지원
목적	경상남도 세라믹 수요기업 연계 강화를 통한 안정적 산업기반 형성 및 해외시장 진출 확대
최종목표	○ 경남 세라믹 산·학·연 교류회 운영 : 연 4회 이상 ○ 경남 세라믹 협동조합 설립 및 운영 : 1개 이상 ○ 경남 세라믹 구매 조건부 자금 지원 : 총 50개 社 ○ 국내·외 세라믹 관련 박람회 참가 지원 : 총 150개 社 ○ 경남 세라믹 산업 무역사절단 및 수출상담회 지원 : 총 200개 社 ○ 경남 세라믹 기업 해외시장 진출 지원 : 총 100개 社
소요기간	총 10 년
소요예산	총 50 억 원 (연간 5 억 원)

사업내용

- 경남 세라믹산업 N/W 형성
 - 경남 세라믹 산·학·연 교류회 구성 및 운영 지원 (세라믹 기업, 수요기업, 대학, 연구기관, 금융·투자기관, 지원기관 등 참여)
 - 경남 세라믹 협동조합 설립 및 운영 지원(설립 비용 지원, 컨설팅 및 운영비용 지원)
 - 경남 세라믹 구매 조건부 자금 지원(소재 구입, 시제품 제작, 마케팅 비용 등)
- 경남 세라믹산업 해외시장 개척
 - 국내·외 세라믹 관련 박람회 참가 지원(참가 비용, 항공료, 물류 비용, 통역 비용 등 최대 2,000 만원)
 - 경남 세라믹 산업 무역사절단 파견 및 수출상담회 참가 지원(항공료, 동역 비용 등 최대 500만원)
 - 경남 세라믹 기업 해외시장 진출 지원 (해외 지사화 사업비, 수출 보험, 제품 현지화/마케팅 비용 등 최대 500만원)

부록 2.

경남 세라믹기업 및 수요기업 설문조사서

경상남도 세라믹 산업 실태 및 정책 수요 조사

본 경상남도 세라믹 산업 실태조사는 '경남 세라믹 산업 육성전략' 수립을 위해 경상남도 內 세라믹 기업을 대상으로 사업 추진 현황을 파악하고, 정부(중앙정부 및 경상남도) 정책적 지원방안에 대한 수요를 파악하는 것이 주 목적입니다.

응답하신 정보는 경상남도 內 세라믹 기업에 대한 지원 정책 도출에만 활용될 예정이며, 이 외 다른 용도로 활용하지 않음을 약속 드립니다.

세라믹 산업이 경상남도의 새로운 성장동력이 될 수 있도록 관련 기업 임직원 여러분의 적극적인 협조를 부탁드립니다. 감사합니다.

주관 기관: 경상남도 국가산단추진단

조사 기관: (주)날리지웍스, (주)마크로밀 엠브레인

조사 문의 : (주)마크로밀 엠브레인 OOO OO, 02-0000-0000, ooooo@embrain.com

1. 기본 정보

1) 기업 기본 정보

사업체 명		사업자 등록번호	
대표자 명		설립 년도	
주소			
데ㅠ버ㅎ	전화 :		
대표번호	팩스 :		
홈페이지	http://		
결산일		월	일

2) 응답자 기본 정보

응답자 성명			소속	부서		
직위	① 대리급 이하	2	과장급	③ 차·	부장급	④ 임원급
전화번호						
이메일						

2. 세라믹관련 사업추진 현황

1) 세라믹 생산제품 현황 (최대 3개까지 기입)

제품명 1						
2017년 매출액		() 억 원				
	선택			구분		
유형		중간재				
		최종재				
	선택	구	분	선택	구	분
		가공·공	·작기계		전기·에너지	
수요산업		자동	5차		가전·전자	
(중간재인 경우)		항공	·우주		디스플레이	
		조선·해영	양플랜트		바이오·학	헬스케어
		건설	자재		기타()
수요처 소재지 별 매출액 비중	경생남도內	%	경생남도 外	%	해외	%

제품명 2							
2017년 매출액		() 억 원					
	선택			구분			
유형		중간재 최종재					
	선택	구	분	선택	구	분	
		가공·공	작기계		전기·에너지		
수요산업		자등	동차		가전·전자		
(중간재인 경우)		항공	·우주		디스플레이		
		조선·해영	양플랜트		바이오·፣	헬스케어	
		건설	자재		기타()	
수요처 소재지 별	ᆲᄹᇎ	%	ᆲᄹ	0/	체이	%	
매출액 비중	경상남도內		경상남도外	%	해외		

제품명 3						
2017년 매출액		() 억	원	
	선택			구분		
유형				중간재		
		_		최종재	_	
	선택	구분		선택		'분
~ O 1101			¦작기계 = +:			에너지
수요산업			동차 ㅇㅈ			l·전자 프레이
(중간재인 경우)			·우주 양플랜트			플레이 헬스케어
			<u> </u>		기타(<u>=-/ \()</u>
수요처 소재지 별 매출액 비중	경상남도 內	%	경상남도 外	%	해외	%
원자재·부품명 1						
2017년 구매액		() 억	워	
				, ' 		
구매처 소재지 별 구매액 비중	경상남도內	%	경생남도 外	%	해외	%
원자재·부품명 2						
2017년 구매액		() 억	원	
구매처 소재지 별 구매액 비중	경상남도 內	%	경상남도外	%	해외	%
원자재·부품명 3						

%

) 억 원

해외

%

<mark>경상</mark>남도 外

(

%

2017년 구매액

구매처 소재지 별

구매액 비중

경상남도 內

3. 세라믹 관련 향후 투자계획

1) 기존제품 관련 향후(3년 이내) 투자계획

항목			투자계획		
인력	1	2	3	4	5
설비	1	2	3	4	5
연구개발	1	2	3	4	5

^{* 2017}년 기준 매출이 발생한 제품

2) 신제품 관련 향후(3년 이내) 투자계획

항목			투자계획		
인력	1	2	3	4	5
설비	1	2	3	4	5
연구개발	1	2	3	4	5

^{* 2017}년 매출 미발생 제품

1 : 단기(3년 이내) 투자(추가 인력확보/자본투입) 계획이 전혀 없음

2 : 단기(3년 이내) 투자 가능성 매우 낮음

3 : 시장 상황에 따라 단기(3년 이내) 투자 여부를 결정할 예정임

4 : 금년 내로 단기(3년 이내) 투자계획을 수립할 예정임(추가 투자 가능성 높음)

5 : 이미 단기(3년 이내) 투자계획을 수립함

3) 신제품 관련 세부 사항 (최대 3개까지 기입)

제품명 1						
	선택		구분			
제품유형			중간재			
		최종재				
	선택	구분	선택	구분		
		가공·공작기계		전기·에너지		
수요산업		자동차		전자부품		
(중간재인 경우)		항공·우주		디스플레이		
		조선·해양플랜트		바이오·헬스케어		
		건설자재		기타()		
매출발생 예상시기	년					

제품명 2				
	선택		구분	
제품유형			중간재	
			최종재	
	선택	구분	선택	구분
		가공·공작기계		전기·에너지
수요산업		자동차		전자부품
(중간재인 경우)		항공·우주		디스플레이
		조선·해양플랜트		바이오·헬스케어
		건설자재		기타()
매출발생 예상시기				1

제품명 3				
	선택		구분	
제품유형			중간재	
			최종재	
	선택	구분	선택	구분
		가공·공작기계		전기·에너지
수요산업		자동차		전자부품
(중간재인 경우)		항공·우주		디스플레이
		조선·해양플랜트		바이오·헬스케어
		건설자재		기타()
매출발생 예상시기			E	<u>.</u>

4. 연구개발 관련 현황

1) 연구개발 관련 기본정보

연구개발 전담조직 보유여부	선택	보유여부	선택	보유여부
한구개를 한숨꼬씩 포뉴어구		보유		미보유
연구개발 전담조직 인력 수			명	
특허 현황	출원특허	건	등록특허	건

^{* 2017}년 12월 31일 기중

2) 국가연구개발사업 참여 경험 (최근 3년이내)

국가연구개발사업 참여 경험	선택	구분	선택	구분
국가한구개발자합 참여 경험		있음		없음
	1			
(있는 경우) 지원부처	2			
	3			
(없는 경우) 참여하지 않은 이유				

3) 외부기관과의 협력 경험 (최근 3년이내)

구분	공동연구		기술0	전	시험평가·기술자문		
11	경상남도 內	건	경상남도 內	건	경상남도 內	건	
산	경상남도 外	건	경상남도 外	건	경상남도 外	건	
خد	경상남도 內	건	경상남도 內	건	경상남도 內	건	
학	경상남도 外	건	경상남도 外	건	경상남도 外	건	
æ	경상남도 內	건	경상남도 內	건	경상남도 內	건	
연	경상남도 外	건	경상남도 外	건	경상남도 外	건	

5. 사업추진상의 애로사항

항목		애로사항		
	문제없음	보통		매우어려움
	1	2 3	4	5
제품개발	애로 해결을 위한 정책적 지원 수요	(3점 이상 응답한 경우	서술형으로	기입)
	문제없음	보통		매우어려움
	1	2 3	4	5
판로확보	애로 해결을 위한 정책적 지원 수요	(3점 이상 응답한 경우	서술형으로	기입)
	문제없음	보통 보통		매우어려움
	1	2 3	4	5
시설투자	애로 해결을 위한 정책적 지원 수요	(3점 이상 응답한 경우	서술형으로	기입)

항목			애로사항		
	문제없음		보통		매우어려움
	1	2	3	4	5
인력확보	애로 해결을 위한 정책적 지원 수요	(3점 이		우 서술형으로	
	문제없음		보통		매우어려움
	1	2	3	4	5
운영자금	애로 해결을 위한 정책적 지원 수요	(3점 이		우 서술형으로	
	문제없음		보통		매우어려움
	1	2	3	4	5
운영·관리 전문성	애로 해결을 위한 정책적 지원 수요	(3점 이	상 응답한 경	<i>우 서술형으로</i>	기입)

항목			애로사항		
	문제없음		보통		매우어려움
	1	2	3	4	5
공급처 확보 ^(원자재, 부품 등)	애로 해결을 위한 정책적 지원 수요	(3점 0		<i>우 서술형으로</i>	
	문제없음		보통		매우어려움
	1	2	3	4	5
입지	애로 해결을 위한 정책적 지원 수요	(3점 0		<i>우 서술형으로</i>	
	문제없음		보통		매우어려움
규제·정책	1 애로 해결을 위한 정책적 지원 수요	2 (3점 0	3 상 응답한 경	4 우 서술형으로	5 기입)

경남 세라믹 부품/소재 활용 현황 및 기업지원 정책수요 조사

본 설문조사는 '경남 세라믹 산업 육성전략' 수립을 위해 경상남도 內 세라믹 부품/소재 수요 기업을 대상으로 사업 추진 현황을 확인하고, 세라믹 부품/소재의 활용확대를 위해 필요한 정부(중앙정부 및 경상남도 지방정부) 정책적 지원방안에 대한수요를 파악하는 것이 주 목적입니다.

응답하신 정보는 경상남도 內 세라믹 수요 기업에 대한 지원 정책 도출에만 활용 될 예정이며, 이 외 다른 용도로 활용하지 않음을 약속 드립니다.

세라믹 산업이 경상남도의 새로운 성장동력이 될 수 있도록 관련 기업 임직원 여러분의 협조를 부탁드립니다. 감사합니다.

주관: 경상남도 국가산단추진단

연구: (주)날리지웍스, (주)마크로밀 엠브레인

문의: (주)마크로밀 엠브레인 OOO, 02-0000-0000, ooooo@embrain.com

1. 기본 정보

1) 기업 기본 정보

사일	업체 명			사업자 등	등록번호		
대표	표자 명			설립	년도		
3	주소						
LII .	ᅲᄡᇂ	전화 :					
<u>-η:</u>	표번호	팩스 :	 팩스 :				
홈	페이지	http://	http://				
			주요 생산 품목	(상위 3개	응답)		
구분			품목명			매출액 비중	
1)							%
2)							%
3)							%

2) 응답자 기본 정보

응답자 성명			소속	부서		
직위	① 대리급 이하	2	과장급	③ 차·	부장급	④ 임원급
전화번호						
이메일						

2. 세라믹 소재 활용 관련

1) 세라믹 부품/소재 활용여부

응답				
예	2) 세라믹 부품/소재 활용 현황 응답 후 3) 으로 넘어감			
아니오	3) 세라믹 부품/소재 활용 계획으로			

세라믹 부품/소재란?

세라믹이란 광물에 열을 가해 만든 비금속 무기재료로 물리적·화학적 처리 및 고온 가공을 통해 내열성, 내마모성, 절연성 등이 우수한 재료로서 형태에 따라 분말, 판이나 관 등의 정형제품, 특수 목적형 비정형 제품, 가공된 부품 등을 포괄하며, 활용 목적에 따라 다음과 같이 구분될 수 있음

[전통 세라믹]

타일, 시멘트 유리 등 건축자재, 산업용 도자기(애자 등), 내화물, 광학렌즈 등이이에 해당되며, 주요 원료로 고령토와 같은 천연광물이 활용됨

[전자 세라믹]

전기자동차 모터용 자성소재, 센서용 세라믹 소자, 전력 반도체 소자 등이 이에 해당되며, 주요 원료로 SiC, GaN 등이 활용됨

[에너지·환경 세라믹]

연료전지용 전국, 열전변환 장치용 세라믹 소자, 세라믹 다공성 필터 등이 이에 해당되며, 주요 원료로 SiC, 금속산화물 등이 활용됨

[바이오 세라믹]

세라믹 소재의 인공관절, 치과용 보철물 등이 이에 해당되며, 주요 원료로 지르코니아 등이 활용됨

[엔지니어링 세라믹]

반도체·디스플레이 생산장비용 내열/내산화 부품, 항공엔진/발전기용 세라믹 터빈블레이드, 선박/항공기 동체에 활용되는 유리섬유 화이버 등이 이에 해당되며, 주요 원료로 SiC, 알루미나, 질화규소 등이 활용됨

2) 세라믹 부품/소재 활용 현황

2-1) 세라믹 부품/소재 활용 현황(최대 5개 까지 응답)

세라믹 부품/소재 명칭	해당 부품/소재를 적용하여 귀사에서 최종적으로 생산한 제품	기업 전체 매출액 중 해당 제품의 매출액 비중	해당 세라믹 부품/소재의 향후 활용 계획
		%	확대/유지/감소 중 선택
		%	
		%	

2-2) 세라믹 부품/소재 구매 미확대 사유

2-1) 활용 계획에 '감소'가 선택된 부품/소재에 대해 응답

선택	사유
	해당 세라믹 부품/소재가 적용된 제품의 매출액 감소가 예상됨
	수급이 원활하지 않아 해당 세라믹 부품/소재의 활용 확대 어려움
	세라믹 부품/소재 특성상 활용성이 낮아 타 소재로 대체 예정
	기타:

3) 세라믹 부품/소재 신규 활용 계획3-1) 세라믹 부품/소재 신규 활용 계획

	응답
있음	
없음	

- 1) '예' 응답, 3-1) '있음' 응답 : 3-2), 3-3) 응답
- 1) '예' 응답, 3-1) '없음' 응답 : 3-2), 3-3), 3-4) 응답 필요 없음
- 1) '아니오' 응답, 3-1) '있음' 응답 : 3-2), 3-3) 응답
- 1) '아니오' 응답, 3-1) ' 없음' 응답 : 3-4) 응답

3-2) 세라믹 부품/소재 신규 활용 계획 품목(최대 5개까지 응답)

세라믹 부품/소재 명	해당 부품/소재를 적용하여 기업에서 최종적으로 생산할 제품	세라믹 부품/소재 신규 활용 계기	대체 대상 부품/소재
선택지 제공		option1) 기존 부품	(option1을 응답한
(다음페이지 표)		따체	경우 활성화)
		option2) 신제품 생산으로	
		<i>인한 신규 수요 발생</i>	

분야	세라믹 부품/소재 선택항목
분말 소재	천연 분말 소재(고령토 분말 등) 산화물계 분말 소재(알루미나, 지르코니아, 티타니아 분말 등) 비산화물계 분말 소재(질화알루미늄, 탄화규소 분말 등)
전통세라믹	타일/벽돌 등 건축자재 광학렌즈/판유리 시멘트/콘크리트 애자 내화물(내화물 분말, 내화벽돌 등)
전자세라믹	세라믹 콘덴서 세라믹 센서(NTC 서미스터, 지르코니아 센서, 압전 센서 등) 자성 소재(페라이트 등) 광학 단결정 소재 전력 반도체(GaN 등)
에너지·환경 세라믹	압전 발전 세라믹 소자 열전 발전 세라믹 소자 이차전지용 전극 연료전지 전극 세라믹 필터 및 촉매(다공성 세라믹 등)
바이오 세라믹	골 이식재 치과용 소재(지르코니아 등) 기능성 화장품 소재 체내 활용 전극/센싱 소재
엔지니어링 세라믹	초고온 내열 소재(우주/항공, 국방, 발전 등) 내산화/내플라즈마 세라믹 소재/부품(반도체/디스플레이 공정용) 내마모/내식 세라믹 소재/부품(절삭공구, 세라믹베어링 등) 세라믹 섬유 소재(유리섬유 강화 복합재료, 유리섬유 단열재 등)
기타	<i>직접입력</i>

3-3) 세라믹 부품/소재 신규 활용을 위한 구체적인 요구사항 (선택응답)

3-2)에서 선택된 세라믹 부품/소재 별 세부내용 응답

해당 세라믹 부품/소재를 활용하려면 구체적으로 어떠한 기술적 요구조건(스펙)을 충족해야 하는지 응답해 주시기 바랍니다.

3-4) 세라믹 부품/소재 미활용 사유 (복수응답 가능)

선택	사유	
	소재 특성이 적절하지 않음	
	부품/소재 공급업체 확보 어려움	
	부품/소재 변경(혹은 도입)을 위한 기술역량 / 전문인력 부족함	
	부품/소재 변경(혹은 도입)을 위한 신규설비 투자 또는 설비 전환 어려움	
	부품/소재 변경(혹은 도입)에 대한 고객(사)의 보수적인 태도	
	부품/소재 변경(혹은 도입) 후 신뢰성 확보 어려움	
	기타:	

3. 세라믹 부품/소재 활용 확대를 위한 정책 지원 수요

향후 세라믹 부품/소재 활용 확대를 위해 귀사를 비롯한 세라믹 부품/소재 구매기업을 대상으로 어떠한 기업 지원 정책(연구개발 지원, 장비·설비투자 지원, 전문인력 확보 지원, 세라믹 부품/소재 기업 연계 등)이 제공되면 좋을지 응답해 주시기 바랍니다.

